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Abstract—We present a novel catadioptric-stereo rig consisting
of a coaxially-aligned perspective camera and two spherical
mirrors with distinct radii in a “folded” configuration. We
recover a nearly-spherical dense depth panorama (360°x153°) by
fusing depth from optical flow and stereo. We observe that for
motion in a horizontal plane, optical flow and stereo generate
nearly complementary distributions of depth resolution. While
optical flow provides strong depth cues in the periphery and
near the poles of the view-sphere, stereo generates reliable depth
in a narrow band about the equator. We exploit this principle by
modeling the depth resolution of optical flow and stereo in order
to fuse them probabilistically in a spherical panorama. To aid the
designer in achieving a desired field-of-view and resolution, we
derive a linearized model of the rig in terms of three parameters
(radii of the two mirrors plus axial separation from their
centers). We analyze the error due to the violation of the Single
Viewpoint (SVP) constraint and formulate additional constraints
on the design to minimize the error. Performance is evaluated
through simulation and with a real prototype by computing dense
spherical panoramas in cluttered indoor settings.

I. INTRODUCTION

Omnidirectional catadioptric systems have been applied to
a range of important problems in robotics including egomo-
tion estimation, reactive obstacle avoidance, and SLAM. The
main advantages of the catadioptric approach to stereo are
twofold. First, catadioptric stereo can be implemented with
a single camera, offering practical advantages for robotics,
such as reduced cost, weight, and robust disparity matching
as a single imaging device does not introduce discrepancies
between cameras’ intrinsic parameters. Second, catadioptric
stereo offers a richer array of topologies that can be adapted
to a specific task. Of practical interest to mobile robotics are
configurations that not only offer a wide field-of-view, but
also exploit the spatially variant resolution of a mirror to an
advantage of the unique dynamics of a robot. For example,
the spatial distribution of depth resolution may be “tuned” to a
particular azimuth and elevation, such as the robot’s dominant
direction of motion.

Many of the catadioptric stereo configurations that were
proposed over the last decade, however, are primarily derived
from the geometries outlined in the seminal treatment by Baker
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and Nayar [1], and aimed at satisfying the ubiquitous single-
viewpoint (SVP) constraint. While the SVP guarantees that
true perspective geometry can always be recovered from the
original image, it limits the selection of mirror profiles to a
set of conic sections [2]. The effect of this limit is twofold:
1) conic mirrors are typically not “generic’ and need to be
manufactured uniquely, thus costly, and 2) vertical field-of-
view is limited in conic mirrors.

Despite these limitations, several SVP-compliant stereo
rigs have been successfully implemented. The most recent
implementation of a catadioptric stereo rig for robotics by Su
and colleagues [3] uses coaxially aligned hyperbolic mirrors
and a single perspective camera. Although the field-of-view
(hereafter referring to vertical field-of-view) is not explicitly
stated, it can be estimated from the specified geometry to be
less than 90 degrees. In addition, while being suitable for
ground vehicles, the system is too bulky for small UAVs.
A small form-factor together with a scalable baseline can
be achieved with a “folded” configuration first introduced by
Nayar and Peri [4] and successfully demonstrated in a number
of applications (none used in robotics), such as [5][6]. Both
utilize SVP mirrors.

Non-SVP configurations using spherical mirrors have ad-
dressed the issues of cost and limited field-of-view. The most
relevant of such being the work of Derrien and Konolige in
[7], while not being stereo, it explicitly models for the error
introduced by relaxing the SVP constraint in the projection
function. Although non-SVP mirrors have been previously
used in robotics, we consider their work seminal in its detailed
study of a non-SVP mirror in its application to mobile robotics.

Another approach to depth-mapping is through the use
optical flow. As proved by Nelson and Aloimonos [8], om-
nidirectional optical flow offers a significant advantage in that
it provides an unambiguous recovery of the system’s extrinsic
parameters given a sufficiently dense optical flow field. This
permits a more robust de-rotation of the optical flow field,
and thus, a more robust recovery of depth. McCarthy et al.
[9] implemented Nelson and Aloimonos algorithm in a planar-
moving robot using fish-eye optics. While this method offers a
nearly hemispherical field-of-view, the depth is only recovered
to a scale factor. In addition, it suffers from loss of depth
resolution in the direction of the robot’s motion, where it is
most valuable. This is inherent to all depth-from-optical-flow
approaches.

The system proposed in this paper addresses several of the
aforementioned limits by generating a near-spherical depth
panorama using generic, low-cost spherical mirrors. We out-
line the main contributions of our work:



1) We use spherical mirrors in a folded configuration to
maximize image resolution near the poles of the view-
sphere. For robots moving in a horizontal plane, this
generates high-resolution relative depth from optical
flow above and below the robot.

2) We exploit radial epipolar geometry of the spherical
mirrors to compute dense metric-depth in the equatorial
region of the view-sphere.

3) We fuse depth from optical-flow (poles) and stereo
(equator) in a dense probabilistic depth panorama to
obtain comparable depth resolution in every direction.
The scale factor for depth-from-optical-flow is recovered
by using weighted least-squares in regions where depth
from optical flow and stereo overlap.

II. DESIGN
A. Model

We present a novel “folded” configuration as shown in Fig.
1. Two spherical mirrors of distinct radii R and r, termed
major and minor mirrors respectively, are separated by a
distance H from their centers. A perspective camera (aligned
coaxially with the mirrors) is located near the surface of the
major mirror (F' in Fig.1) and observes the minor mirror within
its field-of-view 2. Rays that lay within a cone bounded
by « image the major mirror through its reflection in the
minor mirror, while rays bounded between « and 3 image the
minor mirror directly. Note that « and /3 are highly nonlinear
functions of R, r, and H.
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Fig. 1. “Folded” catadioptric stereo system with coaxially-aligned spherical
mirrors. F' is the pinhole of the camera.

The field-of-view (FOV) and the imaged radii R’ and r’
(Fig. 2) of the major and minor mirrors are of interest to us.
Ideally, the imaged radii must be of comparable resolution so
that sufficient detail is preserved in both mirrors for disparity
matching. We define relative resolution as the ratio R'/r’/,
which we can approximate with «/( given a sufficiently nar-
row FOV (2p) of camera I (justified by the design constraints
discussed next).

It is convenient if the camera (F' in Fig. 1) can be de-
composed into two cameras: F' itself and a second virtual

camera F’ (Fig. 4) that observes the major mirror directly.
The two cameras could then be assumed to image the two
spherical mirrors independently, thus, simplifying the analysis
and calibration. Such decomposition is possible if the major
mirror can be assumed to be imaged from a single viewpoint.
While SVP is not satisfied by spherical mirrors in general,
it can be approximated to arbitrary precision given that the
locus of the effective viewpoint that images the major mirror
alone is sufficiently compact. A caustic (locus of the effective
viewpoint) for a spherical mirror was computed parametrically
by Baker [10]. It can be shown that when the pinhole is
sufficiently far from the minor mirror and the incoming rays
are close to the axis of radial symmetry, the single effective
viewpoint F’ can be assumed to lie coaxially with the mirrors
at a midpoint between the center and the surface of the minor
mirror. This is illustrated in Fig. 4 where C' (magenta) is the
caustic of the minor mirror. Thus, F” is positioned at the cusp
of caustic C' when the conditions above are met. This translates
into the design constraint requiring H (separation between the
two mirrors’ centers) to be sufficiently larger than r (radius
of minor mirror), and the field-of-view of the camera F' to
be small enough to fit the entire minor mirror in its FOV. We
define what is “sufficient” when we return to the analysis of
viewpoint error (Fig. 4) introduced by this approximation (end
of Section III).

B. Field-of-view and Resolution

We consider the vertical field-of-view (FOV) of the imaging
system and the imaged mirrors’ ratio («/f3) as a function
of the design parameters H, R, r. From Fig. 1, it is clear
that the FOV is maximized when the ratio r/H is minimized
(the constraint H >> r introduced in the previous section
facilitates the approximation of the virtual camera F’). While
reducing 7 increases the FOV, it proportionally reduces /(.
To compensate for this reduction, we increase the radius of
the major mirror R. In Fig. 3, we demonstrate the effect of R
and r on the FOV and o/. When R>>r, the system’s FOV
is approximately independent of r:

R
FOV =7 —tan™! () (D)
VHZ — R2
Another useful design observation is that the FOV and
the ratio o/ behave linearly with R, as long as R is
sufficiently smaller than H. Putting these constraints together
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Fig. 2. Imaged mirrors as observed by F. R’ and r’ are the radii of the
imaged major and minor mirrors respectively.



Fig. 3. Relationship between field-of-view (FOV) and o/ is approximately
independent of » when R >>1r and H >>r. H is fixed at 10 units, as r
varies from 0.1 units to 2 units (10 samples)

(H >> R >>r) and linearizing the Taylor expansion, we get:
R

FOV =m — T 2)
« R
3= am 3

Equations (2) and (3) have been numerically verified to yield
less than 10% deviation from the non-linearized model when
H > 2R and R > 2r. The model indicates that the design is
fairly tolerant to a wide selection of r, R and H, while still
satisfying the underlying assumptions.

III. OMNIDIRECTIONAL STEREO GEOMETRY
A. Triangulation Model

We adapt the model of triangulation error introduced in
[11] to include the distortion introduced by the two spherical
mirrors. As in [11], we assume a normally distributed error
in measured pixel coordinates with a variance afm of one
pixel. From this point the images of minor and major mirrors
are assumed to be viewed directly by F and F’, respectively.
Practically, this is achieved by cropping the image of the major
mirror from the original image and resampling both images to
a common frame size.

Let v and v (Fig. 4) be the radial pixel positions (polar
coordinates) in the images of F' and F’, respectively. Because
of radial symmetry, u and v have the same azimuths as the
rays to which they project. We define projection functions f(u)
and g(v) that map the pixels from their respective images
to elevation angles ¢ and 6 , relative to the axis of radial
symmetry. Practically, we compute the projection functions
through two separate calibration procedures. However, f(u)
lends itself to a simple analytic description due to the approx-
imate orthographic projection of F.

The distance d from the major mirror’s (approximate)
viewpoint to point P (Fig. 4) is given by:

sin ¢
4= hsin(go +6) @
where h is the baseline (distance between the approximate
viewpoints of the mirrors), and is always less than H.

Fig. 4. Triangulation geometry model. The region of uncertainty around P
is approximately a parallelogram when §6 and d¢ are small.

B. Uncertainty Model

The convex polygon which bounds the region of uncertainty
around point P (Fig. 4) is described exactly by a three-
dimensional non-Gaussian pdf [11]. However it can be ap-
proximated by a Gaussian under the assumption that projected
pixel uncertainties 6 and ¢ are sufficiently small to define
a parallelogram. We can then write the uncertainty as a
product of the two independent Gaussians: N (4, 02) (depth
uncertainty) and A (p19, 07) (elevation uncertainty). Assigning
the origin to the viewpoint of the major mirror, (5) shows that
the depth uncertainty depends on the resolution of the minor
mirror, while elevation uncertainty depends on the resolution
of the major mirror:

ad df(u
(“§)= R ("é) 5)
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Note that because neither mirror satisfies the SVP, a point
approximation of the effective viewpoint does not hold for
points that are too close to the mirrors. Worst case depth error
(greatest uncertainty o2) will occur at the periphery of the mir-
ror where dp gy p (angular difference between true projection
and approximate-SVP projection) (Fig. 4) is greatest. However,
the SVP error vanishes when the imaged point is much farther
than the separation between the mirrors’ viewpoints (d >> h).

IV. DEPTH FROM OPTICAL FLOW

Nelson and Aloimonos outline an algorithm for de-rotating
and recovering depth from an omnidirectional optical flow
field [8]. In what follows, we summarize the Nelson- Aloi-
monos algorithm, describe our method for recovering 3-D
motion parameters and relative depth.

For a spherical camera moving with a linear velocity v and
rotational velocity €2, a 3-D point P projects to a point P on
the view-sphere O and generates an optical flow field U(13) =
[©,®]” (Fig. 5).

As shown in [8], if Pis coplanar with a great circle E;,
where ¢ stands for either X, Y, or Z, then the component of



Fig. 5. View-sphere and the associated great circles for a spherical camera
moving with linear velocity v and angular velocity €2. Depth r to point P
can be computed up to scale after the optical flow field is de-rotated.

the optical flow generated by P parallel to E; is independent
of rotation and translation parallel to great circles orthogonal
to E;. Thus, recovery of the 3-D vectors v (up to scale factor)
and €2 reduces to a sequential recovery of its components
through a 2-D search for rotation and translation in the three
mutually-orthogonal great circles (as opposed to a 3-D search
on the entire sphere). To facilitate this recovery directly in
the image space of F' and F’ (prior to unwrapping), it is
convenient to choose a set of great circles {Ex,Ey,Ez}
because their projections yield a set of perpendicular lines
{es, ey}, which span the length and width of each image,
and circles e, whose radii R(e,) and R’'(e,) are fixed by the
corresponding projection functions f(u) and &(v) (Fig. 6).
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Fig. 6. Projection of great circles onto image flow-fields F and F’. Great
circles Ex and Ey project to horizontal and vertical lines ez, ey, but Ez
projects to circles e, whose radii R(e) and R’(e;) are fixed by projection
functions f(u) and g(v).

Rotation can be recovered in each great circle E; by finding
a rotation €);, which after being factored out, partitions the
flow field into symmetric halves of clockwise and counter-
clockwise flow. For each great circle E;, we adapt the distance
metric d; (defined in [8]) to recover the direction of translation
1; and rotation €;, parallel to E;, such that:

4 = /W (U (0:) — Q4,5 — 0,)d0 (©)

where we define ; to be the polar angle in the plane of E;,
and U, (6;) to be the component of optical flow in the direction

0;, also parallel to E;. In (6), o is defined to be:

_Ja if sgn(a) = sgn(p)
ola,0) = {O otherwise M

The direction of translation and rotation (parallel to E;) are
recovered when the “distance” between a purely translational
flow and the current flow are minimized. The distance metric
d; in (6) is general and does not account for the projection of
optical flow from image space to the view-sphere. The only
exception is the equator Ez, which projects to an isocontour
(e.) of the projection functions f(u) and &(v) (due to the radial
symmetry of e.). Incidentally, the only known implementation
of (6) de-rotates exclusively about the equator and thus utilizes
the equation directly [9].

Adapting (6) to the remaining great circles Ex and Ey
is complicated by the fact that lines e,, e, project on the
images of F' and F’ as complementary portions of the great
circles. We essentially formulate d; in the images of F' and F’
by splitting and discretizing the distance metric (6) into two
sums (corresponding to each half of view-sphere O).

Optical flow fields F and F’ are computed densely using
a block-matching optical flow algorithm implemented in the
OpenCV library (cv: :CalcOpticalFlowBM). Practically,
we compute (6) as a sum along a strip of non-zero width (we
choose Az and Ay to be 10 pixels). Nelson and Aloimonos
calculate the error introduced by this offset and report it
to have a linear relationship with the offset (for Az,Ay =
10 pixels in an 800x600 image, the mean angular error in
recovered ego-motion vectors is < 2%). In practice, the error
is partially compensated by the increased number of samples
along the width of the strip (some of which may be null due
to lack of texture).

After v and € have been recovered, relative depth 7 is
computed on the view-sphere by applying (8) to F and F’:

o x#
o]

where 7 is also defined as |||/ ||¥| and is often referred to
as time-to-contact in robotics [12] and biology literature. T is
a unit vector in the direction of ray [®, ®] on view-sphere O
(Fig. 5), and ||U|| is the magnitude of the spherical optical
flow and can be computed from image flow F and F’ with
the Jacobian of the projection functions f and g respectively.
If relative depth is computed with (8), depth error can be
approximated to be:

®)

or _ 7
([ (¥

As in (5), we formulate the uncertainty in terms of pixel
variance to be o2 = (7/ ||F|)oz,.

(©))

V. FUSING DEPTH FROM OPTICAL FLOW AND
STEREO
Let [©,,,®,] € R? be a pixel in an M x N spherical-
panorama image S that projects to ray [©,®] on the view
sphere O (Fig. 5). For each pixel in S, we define depth r



with a normal error distribution N(jz,-, 72) which is obtained
by fusing stereo and optical-flow depth measurements. Fusion
proceeds in three steps: 1) stereo and optical flow depth
measurements (and their variances) are mapped into their
respective spherical panorama images St and Sop, 2) scale
factor for optical-flow depth is recovered, and 3) metric depth
r and variance o2 are computed for every pixel in S.

Sor is obtained by mapping the computed value of relative
depth 7 using (8) from the optical-flow images F and F’
to pixel [©,,,®,] in Sor. The computation of Sy is a
prerequisite to the process of disparity matching, and therefore
need not be computed again. Using (5) and (9), we compute
stereo and optical-flow depth variances o ,.,.(Om, ®,) and
02 op(Om, ®y,), respectively.

We can recover the scale for optical flow depth
Sor (O, ®,) by searching for a scale factor p that min-
imizes the Euclidean distance between pSor(©,,,®,) and
Sster(Om, @y, ) for pixels in panoramas Sy, and Sor where
both measurements are available. We perform weighted least
squares regression to account for the spatially-variant depth
resolution in different regions of the view-sphere. Finally,
we fuse Sster(Om, ) and pSor(Om, P,) in S by assum-
ing independence between stereo and optical flow error[13].
For space economy, we let Ssier (O, Pr), Sor(Om, Pp),
o—g,ster(gm’ Qn) and JE,OF(@m? (I)Tl)’ be dSteT’ TOF> O—g,ster’
af,o 7 respectively. Estimated depth r and variance o2 are:

2 2 2
dSteTUT,OF + TOFpP Ud,ste'r'
2 2 -2
Ud,ster + P UT,OF
9 1
-2 —2 —2
Jd,ster + p O—T,OF

VI. EXPERIMENTS

(10)

T =

(1)

A. Simulations

Simulations were conducted with synthetic imagery ren-
dered with POV-Ray (open-source ray-tracer). The simulated
rig was designed with the parameters in Table I (first row),
where values satisfy the design constraints H > 2R and R > 2r
for the model.

TABLE I
DESIGN PARAMETERS

Parameter R r H a/B FOV
Simulation: 7 1 15 1/3 153°
Prototype A: 5.25cm 0.7cm 10.5cm 0.35 ~ 1/3 151°
Prototype B: ~ 40.6cm  5.25cm  7l.lem  0.40 &~ 2/5  147.3°

Values satisfy the design constraints H > R >> r for the models

We follow guidelines set forth in Section II (H > 2R and
R > 2r) and derive the parameters in Table I using (2) and
(3). As outlined in the model, both F' and F' are treated
independently, allowing us to calibrate them separately using
OCamCalib, an omnidirectional camera calibration toolbox
developed by Scaramuzza [14] in order to obtain f(u) and
8(v). To evaluate the accuracy of estimated depth (in the fused

TABLE II
EGOMOTION AND DEPTH ERROR (SIMULATION)

Trans. Dir. Trans Dir. Rotational Average
(elevation ) Error o Error o Depth Error
(degrees) (degrees) (degrees) (%)
0 2.4 7.5 5.6
5 2.5 7.7 10.1
10 32 5.6 16.7
15 2.9 6.5 23.6

panorama image S), we generate a fly-through sequence in a
simulated cluttered lab environment (Fig. VI-A). Translation
and rotation are dominant in the equatorial plane with pitch
ranging within 20° from the equator as the camera completes
a loop around the table. For each pixel [O,,, ®,] in spherical
panorama S, we compute a normalized (by o2) Euclidean
distance to ground truth depth z(©,,,®,) extracted from
the simulated scene. For the simulated fly-through sequence
(50 frames), we tabulate (Table II) the standard deviation of
rotational error (defined as the absolute angular differences
between estimated and ground truth orientation) and transla-
tional error (defined as the absolute angular difference between
estimated and ground truth translation directions) recovered
using the method outlined in Section IV. Depth error for
the entire panorama S is measured by computing the mean
of d(O,,, ®,) over all the available measurements in the
panorama S. We parameterize Table II by the elevation angle
of translation to analyze its effect on depth fusion.

The average depth error for panorama S grows with in-
creased elevation angle in the direction of translation. As
explained in Sections III and IV, depth error from optical flow
and stereo generate most efficient spherical coverage when the
motion is in the equatorial plane.

B. Real-world experiments

Two prototypes (A and B) were constructed (Fig. 8) with
the parameters listed in Table I.

¥ Prototype A
minor
mirror

mirror

major

mirror’

Fig. 8. Rig prototypes. (Only Prototype A was used for experimentation).

While prototype A was designed for experimentation, pro-
totype B is a novel concept of catadioptric “enclosure” for
an entire robot (the robot’s body acts as a one giant “folded”
catadioptric system). Prototype B debuted at The 18th Annual
Intelligent Ground Vehicle Competition sponsored in-part by
UAVSI and the U.S. Department of Defense. Our team won the



Fig. 7.

A simulated fly-through sequence (1-5) in a cluttered lab environment. a) original images as observed by F' b) projection of F' on view-sphere c)

projection of depth panorama from stereo Sster On view-sphere. d) projection of fused depth panorama S on view-sphere as observed from below and e) S
as observed from above. Red and blue dashed lines are aligned with recovered motion vectors ¥ and €2 respectively. Notice the following: as predicted (Sec.
III), stereo (c) generates depth mainly near the equator, while when fused with Sor (d, e) generates depth near the poles.

Fig. 9. Spherical depth from a real-world cluttered environment. From left
to right: a) unwrapped spherical panorama of F', b) stereo depth panorama
Sster, ¢) partial Sor from F image only, d) partial Sor from F’ image
only. (f,g,h,i) are projections of (a,b,c,d) on the view-sphere. Red and blue
dashed lines are aligned with recovered motion vectors ¥ and €2, respectively.
Notice the following: as predicted in Sec. I, stereo depth (g) is available only
near the equator, while (h) and (i) generate depth in the opposite poles of the
view-sphere (for motion in the equatorial plane).

first place in the event’s Design Competition, and the system
was also used during the autonomous navigation challenge.
Both prototypes were calibrated with OCamCalib [14].
Prototype A was tested in a cluttered room environment, and
spherical depth was computed in three discrete locations in
the room. The sequential generation of S for one location is
depicted in Fig.9. While no ground truth data is available, the
resulting depth panoramas as well as variance distributions ap-
pear similar qualitatively to the results obtained in simulation.
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