
Incremental	Registration	of	

RGB-D	Images

Ivan	Dryanovski,	Carlos	Jaramillo	and	

Jizhong	Xiao



• Introduction	and	problem	statement

• Edge	detection

– Detection	and	filtering

– Edge	descriptors

• Registration

– High-frequency	loop

– Low-frequency	loop

• Results

• Current	work

Contents



Introduction:	The	Problem

Problem	description:

– Estimate	the	6-DoF	pose	of	a	RGB-D	camera	in	
freehand	motion

– High-frequency	update	described

Data	input:

– Scans	from	an	RGB-D	camera	(such	as	Kinect).

– We	assume	RGB	and	Depth	images	are	already	
registered	

Applications:

A	fast,	robust	pose	estimation	is	useful	for:

– Control

– 3D	Mapping	&	SLAM



Introduction:	The	Approach

Overview	of	the	approach:

• Hi-freq.	loop	– operates	on	sparse	data

– Detect	edges

– Filter	edges

– Classify	edges

– Perform	Edge-ICP

• Lo-freq.	loop	– operates	on	dense	data

– Use	output	of	hi-freq.	loop	as	estimation	for	motion

– Perform	point-to-plane	ICP



Edge	detection

1)	Convert	RGB	image	to	gray-scale

2)	Perform	Gaussian	blur	filtering	to	remove	noise	

3)	Perform	Canny	edge	detection	to	locate	edges



Edge	classification

Each	pixel	belonging	to	an	edge	is	classified	by	the	edge	

orientation

Orientation	is	computed	using	the	gradients	along	the	x- and	y-

dimensions.



Edge	classification

Each	pixel	belonging	to	an	edge	is	classified	by	the	edge	

orientation

Orientation	is	computed	using	the	gradients	along	the	x- and	y-

dimensions.

� = atan(
��

��
)

Where	dy and	dx are	

computed	using	a	Sobel

operator



Detection	+	classification

Example	output	for	a	typical	image:



Edge	filtering	– why	is	it	needed?

We	create	sparse	point	cloud	from	

all	the	pixels	belonging	to	edges	

(see	image	- pink	pixels)

Problem:	edge	sometimes	appears	

on	the	object	background	instead	

of	object	foreground	(see	image	–

area	in	circle)

However,	we	want	edges	which	

are	pose-invariant.



Edge	filtering	algorithm

Problem:	

Edge	sometimes	appears	on	the	object	background	instead	

of	object	foreground	

Solution:

Perform	a	local	search	around	each	edge	pixel	(window	size	

of	3x3	or	5x5)	in	the	Depth	image

If	there	exists	a	significant	jump	from	high	depth	value	to	low	

depth	value,	use	the	pixel	with	the	lower	depth	value	(closer		

to	the	camera).



Detection	+	classification

Example	output	of	depth	filtering:

Edges	on	book	correctly	determined,	other	edges	remain	the	
same.



Registration:	high	frequency	loop

Edge-ICP algorithm:

Register	sparse	point	clouds	of	edge	points	using	ICP

Nearest	neighbor	correspondences	are	computed	
using	Euclidean	distance	in	3D.

For	each	nearest	neighbor	found,	we	check	if	the	θ
values	are	the	similar	(within	30	degrees)

If	not,	we	look	for	the	next	nearest	neighbor.

This	helps	prune	out	false	correspondences	between	
edges



Registration:	low	frequency	loop

The	low-frequency	loop	runs	parallel	to	the	high-

frequency	loop	in	a	separate	thread

We	use	Generalized	ICP	(G-ICPP)	to	register	the	dense	

3D	data

Normally,	GICP	is	slower.	We	use	the	estimated	

transform	from	the	high-freq.	loop	as	input	to	GICP

Result:	low-freq.	loop	refines	results	from	high-freq.	

loop.



Results:

We	use	an	RGB-D	datasets	with	ground	truth	from	a	

VICON	motion-capture	system.

Compare	error	from	dual-loop	approach(Edge-ICP	+	

GICP)	vs.	single-loop	(GICP)	registration.

Measure	average	angular	error	and	translational	error	

per	each	frame.



Results:

How	does	the	dual-loop	approach	compare	vs.	regular	

GICP?



Current	work:

1)	We	are	considering	variety	of	features	for	the	high-frequency	
loop:

– Canny	edges

– ORB	

– SURF

Evaluation	of	which	offers	better	tradeoff	between	speed	and	
accuracy

2)	Incorporating	a	full	SLAM	system	which	can	deal	with	loop	
closure

3)	Open-source	release,	targeted	for	robotics	applications.



Thank	you!


