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Abstract— The limited payload and on-board computation
constraints of Micro Aerial Vehicles (MAVs) make sensor con-
figuration very challenging for autonomous navigation and 3D
mapping. This paper introduces a catadioptric single-camera
omni-stereo vision system that uses a pair of custom-designed
mirrors (in a folded configuration) satisfying the single view
point (SVP) property. The system is compact and lightweight,
has a wide baseline which allows fast 3D reconstruction based
on stereo calculation. The algorithm for generating range
panoramas is also introduced. The simulation and experimental
study demonstrate that the system provides a good solution to
the perception challenge of MAVs.

I. INTRODUCTION

Micro aerial vehicles (MAVs), such as quadrotor heli-
copters, keep emerging as popular platforms for unmanned
aerial vehicle (UAV) research due to their structural sim-
plicity, small form factor, their vertical take-off and landing
(VTOL) capability and high maneuverability. They have
many military and civilian applications, such as target lo-
calization and tracking, 3D mapping, terrain and utilities
inspection, disaster monitoring, environmental surveillance,
search and rescue, traffic surveillance, deployment of instru-
mentation, and cinematography.

The limited payload and on-board computation constraints
of MAVs make sensor configuration very challenging for
autonomous navigation and 3D mapping, which demand
compact and lightweight sensors as well as efficient signal
processing algorithms suitable for on-line implementation.
The most commonly used perception sensors on quadrotors
are laser scanners and cameras (i.e., monocular, stereo, fish-
eye, and omni-directional cameras). Recently, red,green,blue
plus depth (RGB-D) sensors like the Microsoft Kinect R©,
have been adopted for indoor navigation [5]. The lightweight
Hokuyo R© laser scanner produces accurate distance measure-
ments on a 2D plane, but requires the quadrotor to move
up and down in order to generate a 3D map. On the other
hand, RGB-D sensors relieve MAVs from the burden of
frequent vertical motion while generating a 3D map, but they
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suffer from a short range and are only suitable for indoor
applications.

Vision sensor configurations for MAVs are different from
those used in ground robots and high payload UAVs in the
following two aspects:

1) Limitations in the sensors’ size and weight are different.
In MAV applications, sensors’ physical dimensions and
weight are always a big concern. Due to payload
constraints, MAVs normally require fewer sensors that
are compactly designed, while larger robots have greater
freedom of sensor choice.

2) Field-of-view is different. Due to their omnidirectional
motion model, MAVs require 3D observation of the sur-
rounding environment. Conversely, most ground robots
only care about frontal views.

Hence, an imaging system of lightweight compact structure,
large field-of-view, and acceptable resolution is needed for
MAV applications.

Omnidirectional catadioptric vision systems provide a pos-
sible solution and they have been used in autonomous flying
of large UAVs [11] [10]. Researchers have proposed many
different catadioptric configurations with various mirrors
[7][1][3][18][12][14][9][19] and a single camera in order to
produce stereo images by sacrificing spatial resolution. In
[16], 9 possible folded configurations of the single-camera
omni-stereo imaging system are presented and one of them is
realized here. The catadioptric approach to stereo offers prac-
tical advantages for MAVs, such as reduced cost, weight, and
robust pixel-disparity correspondences since a single camera
does not introduce discrepancies between cameras’ intrinsic
parameters or synchronization issues. Omni-stereo offers the
capability to recover dense omnidirectional depth maps for
occupancy grids generation and MAV path planning.

In our previous work, we developed a novel catadioptric-
stereo rig consisting of a perspective camera coaxially-
aligned with two spherical mirrors of distinct radii (in
a “folded” configuration) [14]. The spherical mirrors are
available off-the-shelf but the catadioptric-stereo rig does not
satisfy the single view point (SVP) constraint [15], so it can
only be approximated. We extend our research to design a
SVP-compliant folded, catadioptric omni-stereo system with
custom designed hyperbolic mirrors. The system is compact
and lightweight, satisfies the SVP property, has a wide
baseline that enables fast and accurate 3D reconstruction,
and has acceptable resolution for UAV applications.
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Fig. 1: Synthetic catadioptric single-camera omni-stereo system: a) The simulated rig, consisting of (1) hyperbolical-planar
combined mirror at top, (2) hyperboloidal mirror at bottom, (3) camera (4) transparent cylinder; b) Simulated scenario where
a chess-board, a yellow and a black ball are in the field of view of the omni-stereo vision system; and, c) the image captured
in the scene in Fig. 1b (objects reflected on the bottom mirror appear in the inner image ring, whereas reflections from
the top mirror are imaged in the outer rings). Note the radial symmetry about the image center. Depth information can be
calculated from the corresponding pixel disparities.

II. SENSOR DESIGN

Fig. 1a shows the single-camera catadioptric omni-stereo
vision system that has been specifically designed for our
quadrotors from Ascending Technologies. It consists of 1)
one hyperbolical-planar mirror on the top, 2) one hyper-
boloidal mirror on the bottom, and 3) a high-resolution
camera inside the bottom mirror, all installed inside a 4)
transparent acrylic cylinder tube. The choice of the hyper-
boloidal shape owes to three reasons: it is one of the four
non-degenerated conic shapes satisfying the SVP constraint
[15]; it allows a wider field of view than elliptical and planar
mirrors; and it does not require a telescopic (orthographic)
lens for imaging as with paraboloid mirrors (so our system
can be downsized). In addition, the planar part of the upper
mirror works as a reflex mirror, so distortion due to the dual
reflection is minimal. Based on the SVP property, the system
produces two radial images for visible objects, one in the
inner ring and the other in the outer ring of the image plane
(see Fig. 1b and Fig. 1c).

As Fig. 2 shows, the hyperboloidal part of mirror 1 forms
one image point p1 of P , and its planar part works with
mirror 2 as a reflex mirror, forming the other image p2. The
two image points are on a radial line, which facilitates the
stereo computation. The scale between them is determined
by the position of the 3D point P and the mirror parameters.

A. SVP Constraint and Imaging Geometry

In the configuration of Fig. 3, the foci of mirror 1 are
F1 and F ′1. The foci of mirror 2 are F2 and F ′2. We use
a planar (reflex) mirror to reflect the real camera’s pinhole
located at F ′1 as a virtual camera located at F ′2. Hence, we
denote denoted as d/2 as the reflex mirror’s distance to F ′1
and to F ′2, so that d =| F ′2 − F ′1 |. Since c1 and c2 are the
distances between the two foci of mirror 1 and the two foci of
mirror 2, respectively, the baseline becomes L = c1 +c2−d.
Radially symmetric mirrors conforming to SVP constraint
can be described by two-parameter equations, as detailed

Fig. 2: Image formation of the system. A 3D point P
is imaged as p1 by reflecting on mirror 1, and as p2 by
reflecting on mirror 2 and the planar (reflex) mirror.
Courtesy of Guo [9].



Fig. 3: Geometric model parameters and field-of-view.
Courtesy of Guo [9].

by Baker and Nayar in [15]. Therefore, for the coordinate
system with origin F1, the respective hyperboloidal parts of
mirror1 and mirror 2 can be represented by:
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for some point P1 = (X1, Y1, Z1) in mirror 1, and
P2 = (X2, Y2, Z2) in mirror 2. k1, k2 ≥ 2 are the
eccentricity-related parameters of the corresponding hyper-
bolic mirrors.

Different combinations of these parameters affect the
system dimensions and determine the performance of the
imaging system, such as field-of-view, spatial resolution and
depth resolution. Taking mirror 1 as an example, its projec-
tive geometry is presented to provide a basic understanding
of the imaging process. Let

λ =
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√
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so that point P (X,Y, Z) in homogeneous coordinates with
respect to F1 is reflected at P1 (transformed by λ), and
then imaged as pixel p1 = (u1, v1) through the projection
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In this transformation chain, M1 brings P1 to the coordi-

nate system of F ′1 (or the camera’s frame), and M2 is the
intrinsic matrix of the pinhole camera model with pixel focal
lengths fu & fv , skew term s, and scale factor 1/(c1 + λZ).

B. Vertical Field-of-View (vFOV) Constraint
The horizontal FOV is 360◦. However, the vertical FOVs

(vFOV) of the two mirrors are different. The bottom mirror
has a larger vFOV than the upper mirror as shown in Fig.
3. The overlapping area of the two mirrors’ vFOVs is the
area where objects can be shown in both inner and outer
ring images, where the stereo calculation can be performed.
In the design, the vFOVs are decided by three angles: α, β,
and γ, such that:

vFOV =

{
α+ 90− β β < γ
α+ γ β > γ

(4)

To be installed along the central axis of the quadrotor,
the vision system should ensure that objects located 25cm
above (or under) and at 1 meter away from the axis can be
viewed. At the same time, angle β should be large enough
to avoid the MAV’s blades from getting imaged. The size of
inner and outer ring images should be in good proportion,
as well. Considering all these design factors, we select
α ≥ 14o, β ≥ 65o, γ ≤ 14o . Geometrical relations between
these constraints and system parameters can be established
from Fig. 3.

C. Spatial Resolution
The images acquired by our system are not resolution

invariant. Indeed, an omni-camera producing resolution-
invariant images has a non-analytical form of the mirror [6],
and therefore, it is not suitable for fast 3D depth calculation.
The spatial resolution is defined as the number of pixels
per solid angle. From [15], the relationship between the
resolution of upper mirror ηm1 and that of the conventional
camera ηcam is:
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for a point P1 = (X1, Y1, Z1) in mirror 1 with F1 as
the coordinate frame, where R1 =

√
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P1 = λP , we can substitute R1 = λR in g for equation (5),
to obtain:
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which indicates how the resolution ηcam of a point P in
the image decreases with λ2, and (2) implies it is inversely
proportional with the parameter k1. We observe that the
smaller k1 gets, the flatter the mirror becomes, so it provides
a better spatial resolution. However, a smaller k1 requires a
larger radius, w of the system in order to achieve a similar
vFOV. According to our application, if k1 < 3, it becomes
impractical. On the other hand, the larger k1 gets, the shorter
the baseline L of the stereo system becomes. The same
analysis is true for mirror 2.

D. Depth Resolution

Depth resolution shows the system’s ability to distinguish
two points in the 3D world. The 3D coordinates are retriev-
able only when the depth difference in the image plane can
be detected due to pixel disparity. We study the special case
of Fig. 4 for two points (w.r.t. F1) A1 = (Xa, Ya, L) and
A2 = (Xa + ∆X,Ya, L) that are collinear with the bottom
mirror’s focus F2, where L = c1 + c2 − d is the baseline. A1

and A2 get imaged as the same pixel in the inner ring of the
image (the image of mirror 2), but they appear as different
pixels, a1 = (u1, v1) and a2 = (u2, v2), in the outer ring
image (the image of mirror 1, top view). The depth difference
between A1 and A2 is detectable only when | u2 − u1 |> du
and | v2 − v1 |> dv , where du, dv are the physical pixel
sizes, respectively. A larger baseline, L, can increase the
pixel disparity, and it is preferable for 3D reconstruction.

We compute a1 and a2 from equation (3). This leads us
to conclude that depth resolution approximately decreases
with the baseline L squarely. Among the three variables that
constitute L, c1 contributes more to the length of the baseline
because c1 > c2 − d according to the geometric constraint of
our design. The lower limit of c1 is given in the optimization
of Section III to meet the baseline requirement.

Fig. 4: Depth resolution study: two points with different
depth and their projections onto the image plane.

III. OPTIMIZATION AND SIMULATION

The nonlinear nature of this system makes it very difficult
to balance among all performance aspects. We model this
omnidirectional sensor as an optimization problem where the
length of baseline, L, is the objective function, and unknown
variables xx = (c1, c2, k1, k2, d, w) are the parameters to be
optimized under the following constraints:

a) geometrical constraints, including SVP and reflex con-
straint, as shown in equations (1a) and (1b);

b) physical constraints, including the rig’s tube radius w, and
its height h, which can be expressed by variables in xx;

c) performance constraints, where the spatial resolution and
depth resolution are determined by parameters k1, k2, and
c1 while the vertical field-of-view (vFOV) is a function
of variables in xx.

This optimization problem is solved with the MATLAB
optimization toolbox. The found parameters are then used
to build a synthetic model with POV-Ray, a open-source
ray tracer that allows us to create a 3D scene, with our
customized mirrors and camera models, to be rendered as
an image (as the examples shown in Fig. 1). The simulation
stage plays two important roles in our research: 1) to pro-
duce ground-truth images acquired by the optimized vision
system, and 2) verify if the expected performance is achieved
with respect to the ground-truth knowledge of the synthetic
scene.

After the design optimization, we have produced two
physical prototypes of the compact catadioptric omni-stereo
vision system that can be installed on the Pelican quadro-
tor (made by Ascending Technologies). Fig. 5a shows the
smaller prototype with hyperbolic mirrors of 60 mm in
diameter and a MatrixVision R© BlueFOX-MLC camera (752
x 480 pixel resolution with global shutter at 90fps). Fig.
5b shows the larger rig constructed with hyperbolic mirrors
of 75 mm in diameter and a PointGrey R© Chameleon color
camera (1280x960 Y8 at 15 FPS). The rigs use acrylic
glass tubes to separate the mirrors at the specified distance
h = 150 mm from the base of mirror 2 to the top of mirror
1. The supporting caps for the mirrors were designed in 3-D
CAD and printed for assembly.

(a) 60 mm diameter mirrors
(installed on a AscTec Pelican

quadrotor)

(b) 75 mm diameter mirrors
(compared to can)

Fig. 5: Prototypes of the omni-stereo vision rig



Fig. 6: After mapping pixels from the distorted image into panoramic images (with azimuth and elevation LUTs),
corresponding pixels are found (encoded as a disparity map panorama), and then triangulated from their elevation angles
(Θp1 , Θp2 ).

IV. 3D RECONSTRUCTION FROM OMNI-STEREO IMAGES

Stereo vision used in images is a popular method for
finding pixel correspondences that can provide depth (range)
information based on their disparity values. It should always
be the case that the disparity of objects close to the vision
system is higher than for objects that are far away. This
inverse relation allows us to further triangulate these pixel
correspondences (in a vertical manner) in order to compute
the 3-D position of the correspondences (in the world). As
shown in [8], the unwrapped panoramas contain vertical,
parallel epipolar lines that facilitate the pixel correlation
search.

We understand that the correspondence matching algo-
rithm chosen is crucial for correct disparity computation.
We refer the reader to [2] for a detailed description of
stereo correspondence methods. After comparing various
block matching algorithms, we were able to obtain denser
disparity maps with the variational method introduced by
[13] as it adapts the search to multi-level grids so it can find
better matches in real time. However, no stereo matching
algorithm (as far as we know today) is totally immune to
mismatches.

First, we form the two panoramas for each mirror view (as
shown in Fig. 6) by reverse-mapping 3-D points from a unit
cylinder (surrounding the respective focus) to the pixel points
on the distorted image. We arbitrarily fill up the panoramic
images for a constant width and height (in pixels) from
where we infer the corresponding angular intervals ∆ϕ and
∆Θ. We generate look-up tables (LUTs) in encode angular
elevations Θ1,pi,j , Θ2,pi,j and azimuth ϕpi,j (relative to their
respective focal points F1 and F2) for each image point
pi,j = (ui, vj).

Using stereo matching among the panoramas, we find a
pair of pixels points p1 = (u1, v1) and p2 = (u2, v2) in both

ring images (areas-of-interest) of the mirrors, respectively.
For each azimuthal match (due to vertical correspondences),
we refer to the points’ back-projection angles Θp1 and Θp2

(or their complements α and β) saved in the elevation LUTs.
Given the model’s baseline L, we can calculate the depth

d of the match by triangulation (Fig. 7) as follows:

d = L
sin(α)sin(β)

sin(α+ β)
(7)

where α = 90o −Θp2 , and β = 90o + Θp1 . The real-world
coordinates of P become:

P =

 d · cos(ϕ)
d · sin(ϕ)

d
tan(α)

 (8)

where ϕ is the azimuth angle on the XY-plane.

Fig. 7: Depth d for a pair of corresponding image points
〈p1, p2〉 are obtained via triangulation of the elevation angles
Θp1 and Θp2 obtained from back-projected rays.



Fig. 7 demonstrates the triangulation procedure that we
describe here for our folded configuration of mirrors, which
are coaxially aligned. It is easier to visualize this procedure
as each pair of rays emanating from the origin of the
viewpoints of each mirror coordinate system (the foci F1

and F2), which meet at point P (Fig. 6 and Fig. 7).
By implementing this process (in approximately 10 fps on

a 800x600 resolution image), we give an example of a 3-D
point cloud computed from a synthetic image (for clarity) as
shown in Fig. 8. Observe how the depth of the ball and the
yellow box differ in the scene.

Fig. 8: A 3-D point cloud computed from a synthetic
simulation of the hyperbolic mirrors rig.

V. DISCUSSION AND FUTURE WORK

The mirror shapes are optimized and custom-manufactured
out of aluminum using a CNC machine, as to meet the
performance specifications (e.g., FOV, resolution). However,
it is not an easy job to assemble a perfect imaging system.
The misalignment of top and bottom mirrors, the imprecise
installation of the camera, as well as the glare from the tube
are all caveats we still need to improve for better image
processing and 3D reconstruction.

We have developed an adaptive supporting frame enabling
us to fine tune the assembly using a spring-screw mech-
anism, which adds extra weight. The total weight of the
smaller rig with hyperbolic mirrors of 60mm diameter is
around 200 grams, which can be carried by the AscTec
Pelican quadrotor whose payload is 500g. After improving
the design, we are going to make a mold to produce plastic
mirrors and treat the acrylic support tube with anti-glare
coating. We believe this will dramatically reduce the weight
and improve the image quality. The ongoing research will
focus on the development of efficient software algorithms for
fast 3D reconstruction (dense and sparse clouds) by taking
advantage of the collinear property of corresponding points
(matches). The target is to implement the algorithms on-
board the AscTec Mastermind embedded computer which
has a Intel R© Core

TM
2 Duo CPU. The 3D reconstruc-

tion software based on the omni-stereo vision system will
be integrated with our motion planning and 3D mapping

software [4] leading to a working system for autonomous
navigation. Our software is open-source and is under contin-
uous development. We have implemented our system with
open-source tools such as the OpenCV library [2] and the
Robotics Operating System (ROS) framework [17]. Our soft-
ware is publicly available from our experimental Git repos-
itory at http://robotics.ccny.cuny.edu/git/
ccny-ros-pkg/ccny_experimental.git.
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