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Abstract We design a novel “folded” spherical cata-

dioptric rig (formed by two coaxially-aligned spherical

mirrors of distinct radii and a single perspective cam-

era) to recover near-spherical range panoramas (about

360◦x153◦) from the fusion of depth given by optical

flow and stereoscopy. We observe that for rigid mo-

tion that is parallel to a plane, optical flow and stereo

generate nearly complementary distributions of depth

resolution. While optical flow provides strong depth

cues in the periphery and near the poles of the view-

sphere, stereo generates reliable depth in a narrow band

about the equator instead. We exploit this dual-modality

principle by modeling (separately) the depth resolution

of optical flow and stereo in order to fuse them later

on a probabilistic spherical panorama. We achieve a
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desired vertical field-of-view and optical resolution by

deriving a linearized model of the rig in terms of three

parameters (radii of the two mirrors plus axial distance

between the mirrors’ centers). We analyze the error

due to the violation of the Single Viewpoint (SVP)

constraint and formulate additional constraints on the

design to minimize this error. We evaluate our proposed

method via a synthetic model and with real-world proto-

types by computing dense spherical panoramas of depth

from cluttered indoor environments after fusing the two

modalities (stereo and optical flow).

Keywords catadioptrics · sensor fusion · omnidirec-

tional vision · stereoscopy · optical flow

1 Introduction

Omnidirectional catadioptric systems have been applied

to a range of important problems in robotics including

egomotion estimation[4], reactive obstacle avoidance,

and SLAM[16][8]. A significant subset of these appli-

cations is the recovery of dense omnidirectional depth

maps for occupancy grids and path planning. Nonholo-

nomically constrained motion, such as unmanned aerial

vehicle (UAV) navigation in a vertically-constrained

cluttered environment, requires a complete sphere of

range data for agile maneuverability. Although cata-

dioptric stereo partially addresses this need, current

implementations are limited to estimating depth in a

fairly narrow vertical region that typically lies in the

equatorial region of the view-sphere. In what follows, we

outline the state-of-the-art in catadioptric stereo, and

look ahead to the design of the catadioptric-stereo rig

that is devised specifically for depth-imaging an entire

sphere.
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The main advantages of the catadioptric approach

to stereo are twofold. First, catadioptric stereo can be

implemented with a single camera, offering practical

advantages for robotics, such as reduced cost, weight,

and robust disparity matching, because a single imaging

device does not introduce discrepancies between cam-

eras’ intrinsic parameters. Second, catadioptric stereo

offers a richer array of topologies that can be adapted to

a specific task. The rig we are presenting belongs to the

family of radial imaging systems [9]. Of practical inter-

est to mobile robotics are configurations that not only
offer a wide field-of-view, but also exploit the spatially

variant resolution of a mirror to an advantage of the

unique dynamics of a robot. For example, the spatial

distribution of depth resolution may be “tuned” to a

particular azimuth and elevation, such as the robot’s

dominant direction of motion.

Many of the catadioptric stereo configurations that

were proposed over the last decade, however, are pri-

marily derived from the geometries outlined in the sem-

inal treatment by Baker and Nayar [1], and aimed at

satisfying the ubiquitous single-viewpoint (SVP) con-

straint. While the SVP guarantees that true perspective

geometry can always be recovered from the original im-

age, it limits the selection of mirror profiles to a set of

conic sections [13]. The effect of this limit is twofold: 1)

conic mirrors are typically not “generic” and need to

be manufactured uniquely, thus costly, and 2) vertical

field-of-view is limited in conic mirrors.

Despite these limitations, several SVP-compliant

stereo rigs have been successfully implemented. The

most recent implementation of a catadioptric stereo rig

for robotics by Su and colleagues [19] uses coaxially
aligned hyperbolic mirrors and a single perspective cam-

era. Although the field-of-view (hereafter, we refer to

field-of-view as FOV to mean vertical field-of-view) is

not explicitly stated, it can be estimated from the spec-

ified geometry to be less than 90 degrees. In addition,

while being suitable for ground vehicles, the system is

too bulky for small UAVs. Corrêa et al. [5] developed

a stereo rig with an exceptionally small form-factor by

utilizing a double-lobed hyperbolic mirror with a single

camera in a coaxial configuration. However, in addition

to its limited field-of-view, it suffers from having a small
baseline. A small form-factor together with a scalable

baseline can be achieved with a “folded” configuration

first introduced by Nayar and Peri [14] and successfully

demonstrated in a number of applications (none used

in robotics), such as [7][3]. Both utilize SVP mirrors.

Non-SVP configurations using spherical mirrors have

addressed the issues of cost and limited field-of-view.

The most relevant of such is the work of Derrien and

Konolige in [6], while not being stereo, it explicitly

models for the error introduced by relaxing the SVP

constraint in the projection function. Although non-

SVP mirrors have been previously used in robotics, we

consider their work seminal in its detailed study of a

non-SVP mirror in its application to mobile robotics.

Another approach to depth-mapping is through the

use of optical flow. As proved by Nelson and Aloimonos

[15], omnidirectional optical flow offers a significant

advantage in that it provides an unambiguous recovery

of the system’s extrinsic parameters given a sufficiently
dense optical flow field. This permits a more robust de-

rotation of the optical flow field, and thus, a more robust

recovery of depth. McCarthy et al. [12] implemented

Nelson and Aloimonos algorithm in a planar-moving

robot using fish-eye optics. While this method offers

a nearly hemispherical field-of-view, the depth is only

recovered to a scale factor. In addition, it suffers from

loss of depth resolution in the direction of the robot’s

motion, where it is most valuable. This is inherent to

all depth-from-optical-flow approaches.

The system proposed in this paper addresses sev-

eral of the aforementioned limits by generating a near-

spherical depth panorama using generic, low-cost spher-

ical mirrors. We outline the main contributions of our

work:

1. We use spherical mirrors in a folded configuration

to maximize image resolution near the poles of the

view-sphere. For robots moving in a horizontal plane,

this generates high-resolution relative depth from

optical flow above and below the robot.

2. We exploit radial epipolar geometry of the spheri-

cal mirrors to compute dense metric-depth in the

equatorial region of the view-sphere.
3. We fuse depth from optical-flow (poles) and stereo

(equator) in a dense probabilistic depth panorama to

obtain comparable depth resolution in every direc-
tion. The scale factor for depth-from-optical-flow is

recovered by using weighted least-squares in regions

where depth from optical flow and stereo overlap.

2 Design

2.1 Model

We present a novel “folded” configuration as shown

in Fig. 1. Two spherical mirrors of distinct radii R

and r, termed major and minor mirrors respectively,

are separated by a distance H from their centers. A

perspective camera (aligned coaxially with the mirrors)

is located near the surface of the major mirror (F in

Fig.1) and observes the minor mirror within its field-

of-view 2β. Rays that lay within a cone bounded by
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α image the major mirror through its reflection in the

minor mirror, while rays bounded between α and β

image the minor mirror directly:

α = r tan−1
(

2R√
4H2 − 4Hr − 4R2 + r2

)
(1)

β = 2H tan−1
(

r√
H2 + 2rH

)
(2)

Fig. 1 “Folded” catadioptric stereo system with coaxially-
aligned spherical mirrors. F is the pinhole of the camera.

Note in (1) and (2) that α and β are highly nonlinear

functions of R, r, and H. The vertical field-of-view

(FOV ) and the imaged radii R′ and r′ (Fig. 2) of the
major and minor mirrors are of interest to us. Ideally,

the imaged radii must be of comparable resolution so

that sufficient detail is preserved in both mirrors for

disparity matching. We define relative resolution as the

ratio R′/r′, which we can approximate with α/β given

a sufficiently narrow field-of-view (2β) of camera F

(justified by the design constraints discussed next).

Fig. 2 Imaged mirrors as observed by F . R′ and r′ are the
radii of the imaged major and minor mirrors respectively.

Fig. 3 Virtual camera F ′ can be approximated to be at the
midpoint between the center of the minor mirror and its
surface (given H>>r).

It is convenient if the camera (F in Fig. 1) can be

decomposed into two cameras: F itself and a second

virtual camera F ′ (Fig. 3) that observes the major mir-

ror directly. The two cameras could then be assumed

to image the two spherical mirrors independently, thus,

simplifying the analysis and calibration. Such decompo-

sition is possible if the major mirror can be assumed

to be imaged from a single viewpoint. While SVP is

not satisfied by spherical mirrors in general, it can be

approximated to arbitrary precision given that the lo-

cus of the effective viewpoint that images the major

mirror alone is sufficiently compact. A caustic (locus

of the effective viewpoint) for a spherical mirror was

computed parametrically by Baker [2]. It can be shown

that when the pinhole is sufficiently far from the minor

mirror and the incoming rays are close to the axis of

radial symmetry, the single effective viewpoint F ′ can be

assumed to lie coaxially with the mirrors at a midpoint

between the center and the surface of the minor mirror.

This is illustrated in Fig. 3, where C (magenta) is the

caustic of the minor mirror. Thus, F ′ is positioned at

the cusp of caustic C when the conditions above are

met. This translates into the design constraint requiring

H (separation between the two mirrors’ centers) to be

sufficiently larger than r (radius of minor mirror), and

camera F ’s field-of-view (2β) to be small enough to fit

the entire minor mirror. We define what design con-

straints are “sufficient” when we return to the analysis

of the viewpoint error (δϕSV P in Fig.3) introduced by

this approximation (Subsection 3.2). Given that H>>r,

we can now approximate the real camera F (Fig. 1) to

be orthographic, and define a virtual camera F ′ (Fig. 3)

looking down, located at the cusp of the minor mirror’s

caustic.
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2.2 Field-of-view and Resolution

We consider the vertical field-of-view (FOV ) of the

imaging system and the imaged mirrors’ ratio (α/β) as

a function of the design parameters H, R, r. From Fig.

1, it is clear that the FOV is maximized when the ratio

r/H is minimized (the constraint H>>r introduced in

the previous section facilitates the approximation of the

virtual camera F ′). While reducing r increases the FOV,

it proportionally reduces α/β. To compensate for this

reduction, we increase the radius of the major mirror

(R). In Fig. 4, we demonstrate the effect of R and r on

FOV and α/β.

(a) α/β

(b) vertical field-of-view (FOV )

Fig. 4 Relationships between (a) α/β and R, and (b) vertical
field-of-view (FOV ) and R are approximately independent of
r when R>>r and H>>r. H is fixed at 10 units as r varies
from 0.1 units to 2 units (10 samples).

When R>>r, the system’s field-of-view (FOV ) is

approximately independent of r (minor mirror’s radius):

FOV = π − tan−1
(

R√
H2 −R2

)
(3)

Another useful design observation is that the FOV

(4b) and the ratio α/β (4a) behave linearly with R, as

long as R is sufficiently smaller than H. Putting these

constraints together (H>>R >>r) and linearizing the

Taylor expansion, we end up with:

FOV = π − R

H
(4)

α

β
=

R√
2H

(5)

Equations (4) and (5) have been numerically verified

to yield less than 10% deviation from the non-linearized

model when H ≥ 2R and R ≥ 2r. The model indicates

that the design is fairly tolerant to a wide selection

of r, R and H, while still satisfying the underlying

assumptions.

3 Omnidirectional Stereo Geometry

3.1 Triangulation Model

We adapt the model of triangulation error introduced
in [11] to include the distortion introduced by the two

spherical mirrors. As in [11], we assume a normally

distributed error in measured pixel coordinates with

a variance σ2
px of one pixel. From this point the im-

ages of minor and major mirrors are assumed to be
viewed directly by F and F ′, respectively. Practically,

this is achieved by cropping the image of the major

mirror from the original image and resampling both

images to a common frame size. Eventually, we perform

stereo matching along the rectified epipolar lines of the

undistorted-panoramic images in a traditional fashion

(like done by Kuthirummal and Nayar in [9]).

In more detail, let u and v (Fig. 5) be the radial posi-

tions of the pixels (in polar coordinates) in the images of

F and F ′, respectively. Because of radial symmetry, the

azimuths of u and v have the same azimuths as the rays

to which they project. We define projection functions

f(u) and g(v) that map the pixels from their respective

images to elevation angles ϕ and θ , relative to the axis of

radial symmetry. Practically, we compute the projection

functions through two separate calibration procedures.

However, f(u) lends itself to a simple analytic descrip-

tion due to the approximate orthographic projection of

F . This facilitates a more compact formulation of depth

error in triangulation that we derive in Subsection 3.2.

The distance d from the major mirror’s (approxi-

mate) viewpoint to point P (Fig. 5) is given by:

d = h
sinϕ

sin(ϕ+ θ)
(6)

where h is the baseline (distance between the approxi-

mate viewpoints of the mirrors), and is always less than

H.
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3.2 Uncertainty Model

The convex polygon which bounds the region of uncer-

tainty around point P (Fig. 5) is described exactly by

a three-dimensional non-Gaussian pdf [11]. However,

it can be approximated by a Gaussian under the as-

sumption that projected pixel uncertainties δθ and δϕ

are sufficiently small to define a parallelogram. We can

then write the uncertainty as a product of the two inde-

pendent Gaussians: N (µd, σ
2
d) (depth uncertainty) and

N (µθ, σ
2
θ) (elevation uncertainty). Assigning the origin

to the viewpoint of the major mirror, (7) shows that

the depth uncertainty depends on the resolution of the

minor mirror (imaged by camera F through projection

function f(u)), while elevation uncertainty depends on

the resolution of the major mirror (captured by camera

F ′ through g(v)):(
σ2
d

σ2
θ

)
=

(
∂d
∂ϕ

d f(u)
du 0

0 d g(v)
dv

)(
σ2
px

σ2
px

)
(7)

As outlined in Section 2, if the H>> R>> r con-

straint is satisfied, we can approximate camera F to have

an orthographic projection. We can then analytically

compute the depth uncertainty to be:

σ2
d =

{
h

sin θ

sin(ϕ+ θ)

}{
2

R′2 − u2

}
σ2
px (8)

where R′ is the imaged radius of the major mirror (in
pixels) which depends on relative imaged resolution ratio

(α/β).

Fig. 6 illustrates the combined effect of the spatially-

variant resolution and triangulation error, from which

Fig. 5 Triangulation geometry model. The region of uncer-
tainty around P is approximately a parallelogram when δθ
and δϕ are small.

Fig. 6 Error contours represent the combined effect of depth

and elevation uncertainty
√
σ2
d + σ2

θ . Brighter areas represent

lower uncertainty, and can be observed to lie dominantly in
the equatorial plane of the view-sphere.

Fig. 7 The approximately linear orthographic projection func-
tion f(u) provide nearly constant resolution for the majority
of the image. The rapid loss of resolution near the edge of
the image contributes to the poor depth resolution near the
poles of the view-sphere (Fig. 6). Note that the u-axis appears
normalized in this figure.

we conclude that the highest depth resolution lies in the
equatorial region.

Note that because neither mirror satisfies the SVP, a

point approximation of the effective viewpoint does not

hold for points that are too close to the mirrors. Worst

case depth error (greatest uncertainty σ2
d) will occur

at the periphery of the mirror where δϕSV P (angular

difference between true projection and approximate-SVP
projection) (Fig. 3) is greatest. The greatest angular

(elevation) error of δϕSV P is given by:

δϕSV P,max =
r

h−
√
d2 − r2

(9)

The error vanishes when the imaged point is much

farther than the separation between the mirrors’ view-

points (d>>h). Numeral simulations result in δϕSV P,max
less than 1◦ for points with depth d>3h and less than

5% error in depth at d = 3h. In practice, the effect of

viewpoint error tends to be less significant as δϕSV P is

maximum near the periphery of the mirror, where depth

error is dominated by deteriorating image resolution

(Fig. 7).
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4 Depth from Omnidirectional Optical Flow

Nelson and Aloimonos outline an algorithm for de-

rotating and recovering depth from an omnidirectional

optical flow field [15]. In what follows, we summarize the

Nelson-Aloimonos algorithm, describe our method for

recovering 3-D motion parameters and relative depth,

and analyze the distribution of depth uncertainty on

the view-sphere.

4.1 3-D De-rotation

For a spherical camera moving with a linear velocity v

and rotational velocity Ω, a 3-D point P projects to a

point P̂ on the view-sphere O and generates an optical

flow field U(P̂) = [Θ̇, Φ̇]T (Fig. 8).

Fig. 8 View-sphere and the associated great circles for a
spherical camera moving with linear velocity v and angular
velocity Ω. Depth r to point P can be computed up to scale
after the optical flow field is de-rotated.

As shown in [15], if P̂ is coplanar with a great circle

Ei, where i stands for either X, Y , or Z, then the

component of the optical flow generated by P̂ parallel

to Ei is independent of rotation and translation parallel

to great circles orthogonal to Ei. Thus, recovery of the

3-D vectors v (up to scale factor) and Ω reduces to

a sequential recovery of its components through a 2-D

search for rotation and translation in the three mutually-

orthogonal great circles (as opposed to a 3-D search on

the entire sphere). To facilitate this recovery directly in

the image space of F and F ′ (prior to unwrapping), it is

convenient to choose a set of great circles {EX ,EY ,EZ}
because their projections yield a set of perpendicular

lines {ex, ey}, which span the length and width of each

image, and circles ez whose radii R(ez) and R′(ez) are

fixed by the corresponding projection functions f(u) and
g(v) (Fig. 9).

Rotation can be recovered in each great circle Ei

by finding a rotation Ωi, which after being factored

Fig. 9 Projection of great circles onto image flow-fields F
and F’. Great circles EX and EY project to horizontal and
vertical lines ex, ey, but EZ projects to circles ez whose radii
R(ez) and R′(ez) are fixed by projection functions f(u) and
g(v).

out, partitions the flow field into symmetric halves of

clockwise and counterclockwise flows. For each great

circle Ei, we adapt the distance metric di (defined in [15])

to recover the direction of translation ψi and rotation

Ωi, parallel to Ei, such that:

di =

∫ π

−π
σ(Ui(θi)−Ωi, ψi − θi)dθ (10)

where we define θi to be the polar angle in the plane of

Ei, and Ui(θi) to be the component of optical flow in

the direction θi, also parallel to Ei. In (10), σ is defined

to be:

σ(a, %) =

{
a if sgn(a) = sgn(%)

0 otherwise
(11)

The direction of translation and rotation (parallel

to Ei) are recovered when the “distance” between a

purely translational flow and the current flow are min-

imized. The distance metric di in (10) is general and

does not account for the projection of optical flow from

image space to the view-sphere. The only exception is

the equator EZ , which projects to an isocontour (ez)

of the projection functions f(u) and g(v) (due to the

radial symmetry of ez). Incidentally, the only known

implementation of (10) de-rotates exclusively about the

equator and thus utilizes the equation directly [12].

Adapting (10) to the remaining great circles EX

and EY is complicated by the fact that lines ex, ey
project on the images of F and F ′ as complementary

portions of the great circles. Therefore, we essentially

formulate (12) only for great circle EZ in the images

of F and F ′ by splitting and discretizing (10) into two

sums (corresponding to each half of view-sphere O).

Although we require both distance metrics dx and dy
for the X and Y components, respectively, we only show



Generating Near-Spherical Range Panoramas by Fusing Optical Flow & Stereo from a Monocular Catadioptric Rig 7

the discretized distance metric for the X-component:

dx =


R(ez)∑
u=0

σ

(
df

du
Fx

(π
2
, u
)
−Ωx, ψx − f(u)

)
+ . . .

+

R′(ez)∑
v=0

σ

(
dg

dv
F′x

(π
2
, v
)
−Ωx, ψx − g(v)

)
(12)

On the other hand, dz must be computed as the

tangential component of the flow within ez.

We define [θ, u] and [θ′, v] to be the polar image

coordinates of F and F ′ with the origin in the center

of the images (Fig. 9). Let F(θ, u) and F′(θ′, v) be the
optical flow fields defined as [ẋ, ẏ] and [ẋ′, ẏ′], similar to

U, but in the image space of F and F ′, respectively. Fx
and Fy are components of optical flow field F parallel

to ex, ey that project to spherical optical flow UX and
UY , respectively.

F and F′ are computed densely using a block-matching

optical flow algorithm implemented in the OpenCV li-

brary (cv::CalcOpticalFlowBM). While (12), in gen-

eral, must be computed about an infinitesimally thin

great circle, practically, we compute the integral as a

sum along a strip of non-zero width (we choose ∆x and
∆y to be 10 pixels). Nelson and Aloimonos calculate

the error introduced by this offset and report it to have

a linear relationship with the offset. In our case, for ∆x

= 10 px, ∆y = 10 px, in an 800x600 pixels image, the

mean angular error in recovered ego-motion vectors is

< 2%. In practice, the error is partially compensated by
the increased number of samples along the width of the

strip (some of which may be null due to lack of texture).

4.2 Depth Error Analysis

After v̂ and Ω have been recovered, relative depth τ is

computed on the view-sphere by applying (13) to F and

F′:

τ =
‖v̂ × r̂‖
‖U‖

(13)

where τ is also defined as ‖r̂‖ / ‖v̂‖ and is often referred

to as time-to-contact in robotics [18] and biology liter-

ature. r̂ is a unit vector in the direction of ray [Θ,Φ]

on view-sphere O (Fig. 8), and ‖U‖ is the magnitude

of the spherical optical flow and can be computed from

image flow F and F′ with the Jacobian of the projec-

tion functions f and g, respectively. The source of depth

error computed from optical flow is attributed to the

quantization of the flow vectors in the image. We can

thus formulate the error as a function of optical flow

magnitude:

∂τ

∂ ‖F‖
=
‖v̂ × r̂‖
‖U2‖

· ∂ ‖U‖
∂ ‖F‖

(14)

We remind the reader that the projection functions

of minor and major mirrors are approximately linear for

the majority of the image (Fig. 7), thus, making it pos-

sible to neglect the transformation between image flow

and spherical flow within that region. If relative depth is

computed with (13), depth error can be approximated

to be:

∂τ

∂ ‖F‖
=

τ

‖F‖
(15)

From numerical simulations, error introduced by the

approximation (15) is less than 10% for pixels bounded

by ez, and since the entire view-sphere is contained

within ez of F and F ′, we suffice by computing depth

from the regions bounded by ez. As in (7), we formulate

the uncertainty in terms of pixel variance to be σ2
τ =

(τ/ ‖F‖)σ2
px.

Note that the distribution of error on a spherical

image has a regular pattern (Fig. 10) that is shaped

by two factors: 1) direction of translation v̂, and 2)

non-linearity of the projection functions f and g. Quali-

tatively, depth error is largest in the direction of v̂ and

near the edge of the image (Fig. 10). When v̂ is parallel

to the equatorial plane EZ , the error is largest at the

antipodal points on the equator joined by v̂. Note that

the error distribution is complementary to triangulation

error as described in Section 3, where it is greatest near

the poles (Fig. 6). Next we describe the method for

fusing the depth-from-optical-flow and stereo.

Fig. 10 Depth error from optical flow as a function of v̂
on the view-sphere (d,e,f ) and projected on the image plane
(a,b,c). Greatest error (blue) is found at the antipodes (blue)
joined by v̂. For a camera moving horizontally (a,d), the
greatest error is found in the equatorial plane EZ . Compare
this to stereo error distribution in Fig. 6, where greatest error
lies near the poles.
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5 Fusing Depth from Optical Flow and Stereo

Let [Θm, Φn] ∈ R2 be a pixel in an M × N spherical-

panorama image S that projects to ray [Θ,Φ] on the view

sphere O (Fig. 8). For each pixel in S, we define depth
r with a normal error distribution N (µr, σ

2
r) which is

obtained by fusing stereo and optical-flow depth mea-

surements. Fusion proceeds in three steps: 1) stereo and

optical flow depth measurements (and their variances)

are mapped into their respective spherical panorama

images Sster and SOF , 2) scale factor for optical-flow

depth is recovered, and 3) metric depth r and variance

σ2
r are computed for every pixel in S.

SOF is obtained by mapping the computed value of

relative depth τ using (13) from the optical-flow images

F and F′ to pixel [Θm, Φn] in SOF . The computation of

Sster is a prerequisite to the process of disparity match-

ing, and therefore need not be computed again. Using

(7) and (15), we compute stereo and optical-flow depth

variances σ2
d,ster(Θm, Φn) and σ2

τ,OF (Θm, Φn), respec-

tively.

We can recover the scale for optical flow depth
SOF (Θm, Φn) by searching for a scale factor ρ that min-

imizes the Euclidean distance between ρSOF (Θm, Φn)

and Sster(Θm, Φn) for pixels in panoramas Sster and

SOF where both measurements are available. We per-

form weighted least squares regression to account for the
spatially-variant depth resolution in different regions of

the view-sphere:

ρ = arg min
ρ

M∑
Θm

N∑
Φn

d2Θm,Φn(ρ) (16)

where the residual dΘm,Φn(ρ) is given by:

dΘm,Φn(ρ) =
Sster(Θm, Φn)− ρSOF (Θm, Φn)

σ2
d,ster(Θm, Φn)σ2

τ,OF (Θm, Φn)
(17)

Finally, we fuse Sster(Θm, Φn) and ρSOF (Θm, Φn) in

S by assuming independence between stereo and optical

flow error [10]. For space economy, we let Sster(Θm, Φn),

SOF (Θm, Φn), σ2
d,ster(Θm, Φn) and σ2

τ,OF (Θm, Φn), be

dster, τOF , σ2
d,ster, σ

2
τ,OF , respectively. Estimated depth

r and variance σ2
r are then given by:

r =
dsterσ

2
τ,OF + τOF ρ

2σ2
d,ster

σ2
d,ster + ρ2σ2

τ,OF

(18)

σ2
r =

1

σ−2d,ster + ρ−2σ−2τ,OF
(19)

6 Experiments

6.1 Simulations

Simulations were conducted with synthetic imagery ren-

dered with POV-Ray (open-source ray-tracer), which in

addition to photorealistic rendering, is able to accurately

model complex catadioptric systems such as ours. The

simulated rig was designed with the parameters in Table
1, where values satisfy the design constraints H ≥ 2R

and R≥2r for the model.

Table 1 Design Parameters for a Simulated System

Parameter R r H α/β FOV
Value 7 1 15 1/3 153◦

Values satisfy the design constraints H>R>>r for the model

We follow guidelines set forth in Section 2 (H≥2R

and R≥2r) and derive the parameters in Table 1 using

(4) and (5). As outlined in the model, both F and F ′

are treated independently, allowing us to calibrate them

separately using OCamCalib, an omnidirectional cam-

era calibration toolbox developed by Scaramuzza [17] in

order to obtain f(u) and g(v). To evaluate the accuracy

of estimated depth (in the fused panorama image S), we

generate a fly-through sequence in a simulated cluttered

lab environment (Fig. 11). Translation and rotation are

dominant in the equatorial plane with pitch ranging

within 20◦ from the equator as the camera completes a

loop around the table. For each pixel [Θm, Φn] in spher-

ical panorama S, we compute a normalized Euclidean

distance to ground truth depth z(Θm, Φn) extracted

from the simulated scene:

d(Θm, Φn) =

√
(S(Θm, Φn)− z(Θm, Φn))2

σ2
r(Θm, Φn)

(20)

For the simulated fly-through sequence (50 frames),

we tabulate (Table 2) the standard deviation of rota-

tional error (defined as the absolute angular differences

between estimated and ground truth orientation) and

translational error (defined as the absolute angular dif-

ference between estimated and ground truth transla-

tion directions) recovered using the method outlined

Table 2 Egomotion and Depth Error (Simulation)

Trans. Dir. Trans Dir. Rotational Average
(elevation) Error σ Error σ Depth Error
(degrees) (degrees) (degrees) (%)

0 2.4 7.5 5.6
5 2.5 7.7 10.1
10 3.2 5.6 16.7
15 2.9 6.5 23.6
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Fig. 11 A simulated fly-through sequence (1-5) in a cluttered lab environment. a) original images as observed by F b) projection
of F on view-sphere c) projection of depth panorama from stereo Sster on view-sphere. d) projection of fused depth panorama
S on view-sphere as observed from below and e) S as observed from above. f) projection of the point cloud (50◦ section in
elevation about the equator) on the equatorial plane. Red and blue dashed lines are aligned with recovered motion vectors v̂
and Ω respectively. Notice the following: as predicted (Sec. 3), stereo (c) generates depth mainly near the equator, while when
fused with SOF (d, e) generates depth near the poles (notice light fixture on the ceiling in 2.e)

Fig. 12 Spherical depth from a real-world cluttered room environment. From left to right: a) unwrapped spherical panorama
of F , b) stereo depth panorama Sster, c) partial SOF from F image only, d) partial SOF from F ′ image only, e) fused depth
and stereo panorama S. (f,g,h,i,k) are projections of (a,b,c,d,e) on the view-sphere. Red and blue dashed lines are aligned with
recovered motion vectors v̂ and Ω, respectively. Notice the following: as predicted in Sec. 3, stereo depth (g) is available only
near the equator, while (h) and (i) generate depth in the opposite poles of the view-sphere (for motion in the equatorial plane)
Note the foreground objects from left to right in first row: person, telephone handset, canister.
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Fig. 13 Real-world prototypes. (Only Prototype A was used
for experimentation in an indoor cluttered setting).

Table 3 Design Parameters for the Real-World Prototypes

Parameter R r H α/β FOV
Prototype A 5.25cm 0.7cm 10.5cm 0.35 ≈ 1/3 151◦

Prototype B 40.6cm 5.25cm 71.1cm 0.40 ≈ 2/5 147.3◦

Values satisfy the design constraints H>R>>r for the models

in Section 4. Depth error for the entire panorama S is

measured by computing the mean of d(Θm, Φn) over all

the available measurements in the panorama S. We pa-

rameterize Table 2 by the elevation angle of translation

to analyze the effect of translation direction on depth

fusion.

The average depth error for panorama S grows with

increased elevation angle in the direction of translation.

As explained in Sections 3 and 4, depth error from

optical flow and stereo generate most efficient spherical

coverage when the motion is in the equatorial plane.

Deviations cause greater errors in areas where neither
modality provides sufficient depth resolution.

6.2 Real-world experiments

Two prototypes (A and B) were constructed (Fig. 13)

with the parameters listed in Table 3.

Both prototypes were calibrated with the OCam-

Calib Toolbox [17]. Prototype A was tested in a cluttered

room environment, and spherical depth was computed

in three discrete locations in the room. The sequential

generation of S for one location is depicted in Fig.12.

While no ground truth data is available, the result-

ing depth panoramas as well as variance distributions
appear similar qualitatively to the results obtained in

simulation.

While prototype A was designed for experimentation,

prototype B is a novel concept of catadioptric “enclosure”

for an autonomous ground vehicle where the robot’s

body acts as a one giant “folded” catadioptric system.

Prototype B was employed during The 18th Annual

Intelligent Ground Vehicle Competition sponsored in-

part by the Association for Unmanned Vehicle Systems

International (AUVSI) and the U.S. Department of

Defense. Our mobile robot won the first-place in the

event’s Design Competition. Since real-time fusion of the

two modalities could not be achieved, the system was

put into practice during the autonomous competition

by avoiding nearby obstacles using only the stereoscopic

modality that is mostly reliable around the equator of

the view-sphere.

7 Conclusion

The presented work constructs a low-cost catadioptric

rig by using one perspective camera and two spherical

mirrors of different radii (in a folded configuration). We

have demonstrated (theoretically and with off-line im-

agery) that the fusion of these two modalities (stereo and

optical flow) can generate an almost-entire view-sphere

of probabilistic range information (with exception of

self-occluded areas on the poles). However, computing
dense optical flow (used for de-rotation) has not allowed

us to achieve real-time performance. In future work, we

believe that sparse optical flow fields could be applied by

adapting the Nelson-Aloimonos’ de-rotation algorithm.

Also, the near-sightedness of the rig (which depends

on the baseline as in any other stereo system) could be
addressed via software manipulation of the horopter. We

have noticed that deviations cause greater errors in areas

where neither modality provides sufficient depth reso-

lution (no-overlapping regions) and where information

is not existing at all (self-occlusion regions). A deeper

analysis of uncertainty in each modality will follow as

well as achieving real-time performance of the system.
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