
6-DoF Pose Localization in 3D Point-Cloud Dense Maps Using a
Monocular Camera

Carlos Jaramillo, Ivan Dryanovski, Roberto G. Valenti, and Jizhong Xiao*, Senior Member, IEEE

Abstract—We present a 6-degree-of-freedom (6-DoF) pose
localization method for a monocular camera in a 3D point-cloud
dense map prebuilt by depth sensors (e.g., RGB-D sensor, laser
scanner, etc.). We employ fast and robust 2D feature detection
on the real camera to be matched against features from a virtual
view. The virtual view (color and depth images) is constructed by
projecting the map’s 3D points onto a plane using the previous
localized pose of the real camera. 2D-to-3D point correspondences
are obtained from the inherent relationship between the real
camera’s 2D features and their matches on the virtual depth
image (projected 3D points). Thus, we can solve the Perspective-
n-Point (PnP) problem in order to find the relative pose between
the real and virtual cameras. With the help of RANSAC, the
projection error is minimized even further. Finally, the real
camera’s pose is solved with respect to the map by a simple
frame transformation. This procedure repeats for each time step
(except for the initial case). Our results indicate that a monocular
camera alone can be localized within the map in real-time (at
QVGA-resolution). Our method differentiates from others in that
no chain of poses is needed or kept. Our localization is not
susceptible to drift because the history of motion (odometry) is
mostly independent over each PnP + RANSAC solution, which
throws away past errors. In fact, the previous known pose only
acts as a region of interest to associate 2D features on the
real image with 3D points in the map. The applications of our
proposed method are various, and perhaps it is a solution that
has not been attempted before.

I. INTRODUCTION
Depth sensors continue to gain popularity as technology

progresses and algorithms for indoor 3D mapping (also known
as scene modeling) become more robust. Modeling of indoor
environments with an RGB-D (red, green, and blue color im-
age, plus depth information) sensor like the Microsoft Kinect
has advanced rapidly due to its affordability, availability, and
accuracy for depth acquisition indoors. RGB-D mapping con-
tinues to improve as shown by the state-of-the-art techniques
in [1] and [2]. However, the uniqueness of the presented work
is the use of a monocular camera (an ubiquitous sensor) to do

This work is supported in part by U.S. Army Research Office under grant
No. W911NF-09-1-0565, U.S. National Science Foundation under grants
No. IIS- 0644127 and No. CBET-1160046, Federal HighWay Administration
(FHWA) under grant No. DTFH61-12-H-00002 and PSC-CUNY under grant
No. 65789-00-43.

Carlos Jaramillo is with the Dept. of Computer Science, The Graduate
Center, The City University of New York (CUNY), 365 Fifth Avenue, New
York, NY 10016 (e-mail: cjaramillo@gc.cuny.edu)

Ivan Dryanovski is with the Dept. of Computer Science, The Graduate
Center, The City University of New York (CUNY), 365 Fifth Avenue, New
York, NY 10016 (e-mail: idryanovski@gc.cuny.edu)

Roberto. G. Valenti is with the Electrical Engineering Department, City
College of New York, Convent Ave & 140th Street, New York, NY 10031
(e-mail: rvalent00@ccny.cuny.edu)

*Jizhong Xiao is with the Electrical Engineering Department, City College
of New York, Convent Ave & 140th Street, New York, NY 10031 (*corre-
sponding author, e-mail: jxiao@ccny.cuny.edu)

localization within a point cloud map produced by any type
of depth sensors such as lasers, stereo cameras, time-of-flight
cameras, RGB-D cameras, etc. 3D mapping still remains a
difficult problem, and our approach to localization in a point-
cloud map using a simpler sensor (i.e., monocular camera) has
rarely been investigated before.

After a 3D map of a static scene is available, we prove
that it is possible to re-enter the same scene with a camera
alone and estimate its 6-degree-of-freedom (6-DoF) pose:
3D translation and rotation relative to the map. There are
plenty of applications of our proposed method: augmented
reality showcases and games, museum tours, inspection, mo-
bile robot navigation, etc., can all benefit from localization
within a 3D map. The ubiquity and unconstrained motion
of monocular cameras, such as in smartphones and mounted
in aerial vehicles, requires that the localization gets processed
on-board, which our method qualifies for. Another robotics
application is for swarm navigation, where a leader equipped
with powerful sensor(s) can map the environment first, so its
followers carrying simple cameras can localize themselves in
the map.

As far as we know, we are the first at attempting to localize a
monocular camera in an environment modelled as a 3D point
cloud. Note that we are not attempting to solve the Visual
Simultaneous Localization and Mapping problem using a sin-
gle camera (MonoSLAM [3]). Various real-time methods for
relocalization using a monocular camera have been proposed.
For example, in 2007 by Williams, Klein and Reid [4], and
similar biologically-inspired systems given in [5], [6]. With
the emergence of cost-effective RGB-D sensors, Engelhard,
Endres, and Hess [7] developed a 3D Visual SLAM. Faster and
more accurate visual mapping techniques continue to improve,
as in [2] by Dryanovoski, Valenti and Xiao.

Monocular SLAM methods based on PTAM (Parallel Track-
ing and Mapping), such as [4], include a tracking thread with
a similar functionality to our proposed method. Although [4]
uses monocular images (without relying on a 3D map), their
approach is different because our relocalization method does
not need to keep a history of features in the map, but only the
previous 3D pose of the camera is needed as an aid to look
around the area in which the camera was previously at. Older
information is discarded on a frame-to-frame basis, as opposed
to the PTAM solution, which tracks and bundle adjusts by
growing the map (some form of SLAM). Our advantage
of having a dense 3D map is enormous (computationally
speaking and for robustness), but mainly because the camera’s
egomotion is not a factor for localization within the map
(assuming the previous known pose is more-or-less correct).

Fig. 1: Pipeline for the monocular localization at a given time t, where t > 1. The 3D map, M [W] is a static input, whereas
the real images, I arrive continuously. We generate a virtual image, V

t�1 from the map and the previously known pose of
the camera in the map, C [W]

t�1 . Then, 2D features, D
t

are extracted and matched from both images. The matched 2D feature

points, p
⇣
D

[It]
t

⌘

, of the real image are refined against the associated 3D points, P [Vt�1]
t

, via RANSAC applied to PnP. This
produces the relative transformation, T [Vt�1]

t

, between the real and the virtual camera frames, [I
t

] and [V
t�1], respectively. The

new camera pose in the global frame, C [W]
t

, is found after a simple transformation and it is final output of the pipeline at time
t (and the only parameter that is saved for the next iteration, if any)

We rather follow the suggestion given in the Further Work
section of [8], so the user initially maps out the scene in
order to avoid resource-intensive SLAM techniques for re-
entry localization. In fact, we don’t track points as the camera
moves in space, and there is where our contribution mainly
outstands. Also, we use more precise and denser point-cloud
maps (with color information). We believe any view inside
the map serves to robustly localize our camera without drift
due to egomotion tracking. Our solution is explained and
demonstrated in the following sections.

II. MONOCULAR LOCALIZATION WITHIN A 3D MAP

A. Overview of the Proposed Method

Since we do not try to solve the Visual SLAM problem,
we assume the 3D point-cloud map, M [W], already exists and
does not change (it is static) as the camera revisits it. (Note
that the 3D points of the map are positioned with respect to
the global frame [W]). At a given time step t > 1, the only
dynamic input to our system is an image, I

t

, from the real
camera. A virtual image, V

t�1, is generated in parallel (at
time t) from the previous pose, C [W]

t�1 , computed at time t� 1
by projecting the 3D point cloud M

[W] onto a virtual image
plane (refer to Subsection II-D). Also, notice that we treat the
initial case at t = 1 differently (see Subsection II-C).

Fast feature extraction and matching is performed with
both images I

t

and V

t�1, resulting in 2D feature points
(keypoints) sets D

[Vt�1]
t

and D

[It]
t

, respectively. Out of the

matched virtual keypoints, p
⇣
D

[Vt�1]

t

⌘

, from D

[Vt�1]
t

, we know
their constructing 3D points, P [Vt�1]

t

with respect to the virtual
camera frame, as well as their 2D keypoint correspondences,

p

⇣
D

[I]
t

⌘

, on the “real” image. We use these 3D points to solve

the perspective from n points problem (PnP [9]) with respect
to the virtual camera frame, [V

t�1] . Consequentially, we
apply RANSAC [10] to reject outlier matches from the original
feature sets based on their reprojection error. Thus, from PnP
and RANSAC, we obtain the relative transformation, T [Vt�1]

t

,
between the image frames [V

t�1] and [I
t

] at the current time t.
Finally, we compute the new pose, C [W]

t

, of the camera with
respect to the map (global frame coordinates [W]) using the
previous known position, C [W]

t�1 , of the camera, which is now
transformed by the relative pose, T [Vt�1]

t

:

C

[W]
t

= C

[W]
t�1 · T [Vt�1]

t

(1)

Thus far, we have briefly described a time-step of the
process, which repeats indefinitely. A high-level overview
of our method is given in the pipeline of Fig. 1. In the
next subsections, we explain the essential components of this
pipeline. However, we begin by briefly describing how the
3D point-cloud maps are generated offline for use with our
localization approach.

B. Offline 3D Point-Cloud Mapping

Our method requires an existing 3D map, M , as a set of
3D points with color information, which is constructed offline
by some methods, such as with iterative-closest point (ICP
[11]), as done in [2], [12]. In other words, ICP is used to align
the individual, consecutive 3D point-clouds (a.k.a. keyframes),
which are also saved in order to compute the initial camera
pose as described in Subsection II-C). Newcombe et al. [13]
presented a system for RGB-D pose tracking and mapping by
aligning dense depth data against a map of a surface. However,
their system requires a GPU-equipped computer. Another map
builder based on feature descriptors is given by Endres et al.

Fig. 2: A dense 3-D point cloud map that was built real-time
(for offline use with our method) using an RGB-D sensor at
640x480 pixels resolution at a rate of 30 frames per second.
This map was constructed as given in [2].

[14], but it also requires a powerful processor, so it is not an
attractive solution for low-performance on-board robots.

Instead, Dryanovski, Valenti and Xiao proposed a real-time
visual odometry and mapping system for RGB-D cameras [2].
We use this method to build dense, point-cloud maps of static,
indoor environments. Then, our method can localize the pose
of any monocular camera that revisits the mapped scene. An
example of a dense map built with this system is shown in
Fig. 2.

C. Initial Pose Estimation

The pipeline of Fig. 1 can only be used when a previous
pose, C [W]

t�1 , is available. However, at t = 1, this is not true,
so we need another way of computing C

[W]
0 . In a nutshell, we

estimate the initial pose by comparing the first “real” image,
I1, against every keyframe image used to produce the 3D
point-cloud map. We take advantage of knowing the map is a
data structure of keyframes, K

j

, where j = {1, . . . , J} for a
map composed of J keyframes and their poses. Each keyframe
is composed of a pair of color image and its registered depth
image, or (I

RGB

, I

depth

)
Kj . More details about the map data

structure can be found in [12] and [2].
In the first input image, I1, we detect SURF features [15]

and its descriptors, D

I1
1 , and we do the same for all the

keyframes’ color images, I
RGB,Kj , 8Kj

. Next, we train a de-
scriptor matcher from all the features across the J keyframes.
For each feature descriptor in the real image, we find n nearest
feature neighbors using the descriptor matcher. Each feature
in I1 will, therefore, point to a vector of descriptor matches,
which contain relevant information such as keypoint index and
matching distances. For all n vectors of descriptor matches, we
sort them based on the matching distance (in feature descriptor
space), and we take the top n candidates (the first descriptor
match of each vector).

Finally, we perform a robust PnP matching between the n

points from the real image and their corresponding 3D points
in the map obtained from the top n matches. Note that feature
keypoints in the descriptor matches can resolve to their parent
keyframe index, j, so 3D points in the global frame [W] are
immediately given by its registered depth image, I

depth,Kj and

its global pose in the map (also available in the data structure).
Additionally, we employ RANSAC on the PnP in order to
refine the initial pose C

[W]
0 that maximizes the number of

inlier keypoints.
The initial pose estimation is a slow procedure, which

depends on the CPU characteristics, the size of the map, and
the feature matching parameters such as the n number of
neighbors sought across the J map keyframes, the feature
descriptor type, as well as the RANSAC-related parameters
(e.g. number of iterations, threshold distance, etc.).

D. Virtual Images from Perspective Projection

Procedure GenerateVirtualImage(M [W], A, w, h, C [W]
k

)

Input: M [W]: Dense 3D point-cloud map (frame [W])
Input: A: the 3⇥ 3 intrinsic camera matrix
Input: w: the camera’s width (in pixels)
Input: h: the camera’s height (in pixels)
Input: C [W]

k

: The known pose (rotation matrix Rot and
translation vector t) for the camera frame I

k

with
respect to the global frame [W] at time k.

Output: V
k

: Color virtual image at time k

Output: R
k

: Depth (range) virtual 2D image at time k

// Initialize color and depth buffers

V

k

[All] 0
R

k

[All] 0
foreach i, where i = {1, . . . , kMk} do

p[W] M

[W]
.3Dpoints[i]

// Transform world point P into the

camera frame

p[Vk] = Rot ⇤ p[W] + t
d p[Vk]

.z // Depth

if d > 0 then
// Perform projection into the

virtual image plane V

k

v
k

= A · p[Vk]

x v
k

.x; y v
k

.y; z v
k

.z

// Determine image pixel (u, v)
u x/z; v y/z

// Accept point only within the

camera’s field-of-view

if (u < w)and(u � 0)and(v < h)and(v � 0)
then

// Compute depth buffer

if R
k

[u, v] == 0 then
V

k

[u, v] p[W]
.color ; R

k

[u, v] d

else
// Smaller depth is saved

if (d > 0)and(depth < R

k

[u, v]) then
V

k

[u, v] p[W]
.color ; R

k

[u, v] d

return V

k

, R
k

(a) Virtual image, Vt�1 (b) Real image, It

Fig. 3: Image examples: (a) Virtual image V

t�1 generated
by the projection of the 3D point cloud (3D map) at the
last known pose C

[W]
t�1 (b) Real image I

t

from the monocular
camera at time t

An essential component of our system is the generation of
the virtual image V

k

at time k, where k = t�1. In addition, we
compute a virtual depth image, R

k

, that encodes the associated
3D position of the points p[Vk] in the map as seen by the virtual
camera. The GenerateVirtualImage procedure explains
our algorithm thoroughly. As input, the procedure requires the
map, M [W], and the intrinsic matrix for the pinhole camera
model,

A =

0

@
f

x

0 c

x

0 f

y

c

y

0 0 1

1

A (2)

where f

x

and f

y

are the focal lengths, and (c
x

, c

y

) is the
optical center of the image. The remaining input arguments
are the width and height, (w, h), of the desired virtual images
(measured in pixels), and the last known pose C

[W]
k

=
[Rot t].

We zero-initialize the image and depth buffers (V
k

, R

k

).
Then, we iterate over the kMk 3D points of the map, M [W].
Each point p[W] is transformed into the virtual camera frame,
[V

k

], as follows:

p[Vk] = Rot ⇤ p[W] + t (3)

The point p[Vk] is then transformed onto the virtual image
frame as v

k

= A · p[Vk]. The pixel coordinates (u, v) in the
image is obtained by simply dividing the x and y components
of v

k

by its z component, respectively.
We project only those points within the camera’s field-of-

view. We select the nearest points by maintaining a Z-buffer,
which is eventually used as the resulting virtual depth image
R

k

(needed for reconstructing the 3D points in some region
of interest at time t = k+1). Since the point cloud is not solid
(dense enough) and its projection from a different viewpoint
can produce holes in the virtual image, we fill them up by
interpolating to the value of each point nearest neighbor pixel.
Fig. 3a is an example of a virtual image V

t�1 generated at
some time t using the last known pose C

[W]
t�1 .

E. Feature Matching

The second stage of the pipeline (Fig. 1) is to use the virtual
image, V

t�1, and the real image, I

t

, (examples are Fig. 3a

Fig. 4: Resulting SURF feature correspondences between real
(left) and virtual (right) images (shown in Fig. 3b and Fig. 3a,
respectively).

Fig. 5: Filtered feature correspondences of matches shown in
Fig. 4 after executing PnP with RANSAC (reprojection error
used as fitness = 10 pixels) .

and Fig. 3b, respectively) to find feature correspondences. In
order to avoid extracting point features in regions of the virtual
image where depth values are missing (color was interpolated),
we construct a “mask” from the virtual depth image, R

t�1, and
pass it to the feature detector function for the virtual image.

We have experimented with several choices of feature
detectors, including SURF, ORB, and Shi-Tomasi keypoints.
While our implementation offers a configurable choice be-
tween various feature detectors, we arbitrarily chose the SURF
detector due to its robustness for handling rotation and scale
variance and localization efficiency [16]. Note that features
are detected on the intensity channel of the images. Feature
correspondences are found through the Fast Library for Ap-
proximate Nearest Neighbors (FLANN) [17]. An example of
some found feature correspondences is shown in Fig. 4.

F. Relative Pose Transformation with PnP and RANSAC
In order to compute C

[W]
t

, as given by (1), we need to
estimate the relative pose of the camera, T

[Vt�1]
t

, at time t.
For this purpose, we perform PnP on the 2D feature points of
the real image, p(D

[I]
t), with their 3D point correspondences,

P

[Vt�1]
t

, which have been encoded in the virtual depth image,
R

t�1, and are given with respect to the virtual camera frame,
[V

t�1].
We also run RANSAC to refine the relative pose estimates

T

[Vt�1]
t

that PnP computes. Inliers are selected from feature
matches (correspondences) according to some threshold repro-
jection error (in pixels). Fig. 5 presents an example of this final
refinement.

Fig. 6: Visualization of an estimated pose, C

[W]
t

, of the
monocular camera at some time t. Visualized axis in red (X),
green (Y), and blue (Z) corresponds to the camera frame
where Z is the optical axis pointing forward, and X,Y is
the image plane

Once the current C

[W]
t

pose is estimated with respect
to the global frame, we repeat the pipeline, by updating
C

[W]
t�1 C

[W]
t

with the latest known pose, and we throw
away any previous poses. Recall that our localization method
does not depend on the camera’s odometry (chain of pose
transformations).

III. EXPERIMENTAL RESULTS

A. System Implementation

1) We build the dense 3D map, M [W], as a point cloud using
an RGB-D sensor (e.g. Microsoft Kinect) by applying
mapping techniques such as the proposed by [2] and
shown in Fig. 2.

2) We implement the system described in Section II, on top
of open-source tools such as the OpenCV library [18]
and the Point Cloud Library (PCL) [19], both available
in the Robotics Operating System (ROS) framework [20].
The implementation is in continuous development, and is
available from our ccny-ros-pkg repository.

Fig. 4 is a snapshot of the successful localization (at some
arbitrary time interval t) inside the dense 3D map is shown
in Figure 7 for 320x240 pixels images and SURF feature
detection with approximately 60 inliers.

B. Experiments

Our current results are mostly qualitatively due to the lack of
“dense enough” ground truth datasets obtained from RGB-D
sensors. A simple error analysis is performed in Subsection
III-C. A supporting video (http://youtu.be/0O28HHFl4VU)
reflects the The supporting video reflects the/ appropriate pose
estimation of the camera within the 3D map. For a camera

at QVGA resolution (320x240 pixels), the average execution
times running on a 1.7 GHz Intel Core i5 processor (inside a
virtual machine) were:

• Virtual Image Generation: 70 ms
• SURF feature detection and description: 100 ms
• SURF Feature matching with FLANN: 8 ms
• PnP with RANSAC (1000 iterations, 50 inliers, 10 pixels

reprojection error): 200 ms
Bear in mind that these time values include the visualization

overhead of the 3D map and the images.

C. Error analysis

We have only compared pairwise error using the pose of the
RGB camera in the sensor, as a ground truth reference for the
error metric of the system and its relocalization in the same
3D map with the proposed method.

This error metric is based on [21]. It operates among the
transformation estimated by the proposed system, Ĉ [W]

t

, and
the transformation reported for the corresponding keyframe
pose, C [W]

t

, at time t. This error is formally defined as

E =
nX

i=1

⇣
Ĉ

[W]
t

 C

[W]
t

⌘
(4)

where the operator on two transforms A and B is

A B ⌘ B

�1
A (5)

The error E is a transform which includes a rotational
matrix component E

Rot

, and a translation vector component
Et. We define the total pose estimation error, et, as the size
of the translation error vector:

et = kEtk (6)

We define the total angular error, e
Rot

, as the principal angle
of the rotation matrix error, E

Rot

, given by

e

Rot

= |cos�1(0.5 tr(E
Rot

)� 1)| (7)

From our experiment, the average error is about 4 cm (trans-
lational) and 1 degree (rotational). However, we are aware that
this metric is not sufficient to determine the precision of the
system under all situations since here, the camera views are
also keyframe images that created the original map. A more
quantitative error analysis should be performed by tracking the
monocular camera with a motion-capture system.

IV. CONCLUSION

We presented a pose localization method for a monocular
camera in a in a prebuilt 3D point-cloud map of a static
environment. We computed matches between the real and
virtual images by using fast and robust 2D features . A virtual
view (color and depth images) was constructed by projecting
the map’s 3D points onto a plane using the localized pose of
the real camera from the previous time step (except for the first
pose). 2D-to-3D point correspondences were obtained from
the inherent relationship between the real camera’s 2D features
and their matches on the virtual depth image (constructed from

3D points in the map). Then, we solved the Perspective-n-Point
(PnP) problem to find out the relative, 6-DoF transformation
between the real and virtual cameras. Further refinement is
done with RANSAC, so the projection error is minimized and
inlier correspondences result for the computed relative pose
transformation. From a final frame transformation, the result
is the real camera’s 6-DoF pose (3D position and rotation)
with respect to the map (global frame). This procedure repeats
indefinitely for each time step.

Our results indicate that with an appropriate choice of
parameters, a monocular camera can be localized in the 3D
map in real-time (for QVGA-resolution images on a laptop’s
single-core CPU). Our method differentiates from others in
that no chain of poses is necessary, but only the last known
pose is preserved to act as a region of interest in order to
associate 2D features on the real image with 3D points in the
map. As a result, the localization of the camera is independent
from odometry since PnP + RANSAC relocalize the camera at
each time step. In contrast, a chain of transformations tend to
accumulate error (drift) as what happens with visual odometry
solutions. We believe there are many applications that fit into
this scenario and our camera localization method in 3D point-
cloud maps provide a solution to this unique and challenging
problem that has not been adequately investigated before.

V. DISCUSSION AND FUTURE WORK

Although our preliminary results look very promising be-
cause we are able to run the algorithm in real time on a
modern computer, there are some caveats we need to address.
We are aware that the quality of the produced virtual images
affects the feature correspondence procedure. Indeed, lots of
weak features affect the performance of the entire algorithm,
and it is important to mention that the robustness of the
correspondences is an important aspect to consider. The fine-
tuning of RANSAC parameters, such as the maximum number
of iterations, the pixel reprojection error, and the number of
inliers, are essential for speeding up the PnP computation with
robust results. As already mentioned, we compute the initial
pose of the camera by means of stored keyframes from the
mapping stage. In fact, this first step adds an initial delay
before the live image-feed can start to be processed. We also
need to validate our method by experimenting with bigger
maps and performing error analysis with ground truth data.

We propose several enhancements for the application of
this method such as aiding the rotation estimation with IMU
sensors (smart phones usually have them readily available)
and using wider field-of-view real (as well as virtual) in order
to tolerate drastic motion. The generation of virtual images
can be speed up by referring to smaller regions of interest,
which can only be obtained from spatially organized point-
cloud data structures such as Octomaps or KD-trees. Also,
we are aware that working with dynamic environments can
be difficult (for now maps must be static). Perhaps, masking
foreground objects from both map and visiting images can
help workaround this problem.

REFERENCES

[1] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “RGB-D Mapping:
Using depth cameras for dense 3D modeling of indoor environments,”
in the 12th International Symposium on Experimental Robotics (ISER),
2010.

[2] I. Dryanovski, R. G. Valenti, and J. Xiao, “Fast Visual Odometry and
Mapping from RGB-D Data,” in International Conference on Robotics
and Automation, vol. 10031, 2013.

[3] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, “MonoSLAM:
real-time single camera SLAM.” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 29, no. 6, pp. 1052–1067, Jun. 2007.

[4] B. Williams, G. Klein, and I. Reid, “Real-Time SLAM Relocalisation,”
Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference
on, pp. 1–8, 2007.

[5] M. J. Milford and G. F. Wyeth, “Single camera vision-only SLAM
on a suburban road network,” 2008 IEEE International Conference on
Robotics and Automation, pp. 3684–3689, May 2008.

[6] M. J. M. Milford and G. G. F. Wyeth, “Mapping a Suburb With a Single
Camera Using a Biologically Inspired SLAM System,” Robotics, IEEE
Transactions on, vol. 24, no. 5, pp. 1038–1053, 2008.

[7] N. Engelhard, F. Endres, and J. Hess, “Real-time 3D visual SLAM
with a hand-held RGB-D camera,” in Proc. of the RGB-D Workshop on
3D Perception in Robotics at the European Robotics Forum, Vasteras,
Sweden, 2011.

[8] G. Klein and D. Murray, “Parallel Tracking and Mapping on a camera
phone,” 2009 8th IEEE International Symposium on Mixed and Aug-
mented Reality, pp. 83–86, Oct. 2009.

[9] F. Moreno-Noguer, V. Lepetit, and P. Fua, “Accurate Non-Iterative O(n)
Solution to the PnP Problem,” 2007 IEEE 11th International Conference
on Computer Vision, pp. 1–8, 2007.

[10] M. Fischler and R. Bolles, “Random sample consensus: A paradigm
for model fitting with applications to image analysis and automated
cartography,” Communications of the ACM, vol. 24, no. 6, 1981.

[11] A. Segal, D. Haehnel, and S. Thrun, “Generalized-icp,” Proc. of
Robotics: Science and Systems . . . , 2009.

[12] I. Dryanovski, C. Jaramillo, and J. Xiao, “Incremental registration
of RGB-D images,” IEEE International Conference on Robotics and
Automation (ICRA), 2012.

[13] R. A. Newcombe, A. J. Davison, S. Izadi, P. Kohli, O. Hilliges,
J. Shotton, D. Molyneaux, S. Hodges, D. Kim, and A. Fitzgibbon,
“KinectFusion: Real-time dense surface mapping and tracking,” 2011
10th IEEE International Symposium on Mixed and Augmented Reality,
pp. 127–136, Oct. 2011.

[14] F. Endres, J. Hess, D. Cremers, and N. Engelhard, “An Evaluation of
the RGB-D SLAM System,” in International Conference on Robotics
and Automation, vol. 1, no. c. Ieee, May 2012, pp. 1691–1696.

[15] H. Bay, A. Ess, T. Tuytelaars, and L. Vangool, “Speeded-Up Robust
Features (SURF),” Computer Vision and Image Understanding, vol. 110,
no. 3, pp. 346–359, Jun. 2008.

[16] T. Tuytelaars and K. Mikolajczyk, “Local Invariant Feature Detectors-
A Survey,” Foundations and Trends in Computer Graphics and
Vision, vol. 3, no. 3, pp. 177–280, 2008. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1391082

[17] M. Muja and D. Lowe, “Fast approximate nearest neighbors with au-
tomatic algorithm configuration,” in International Conference on Com-
puter Vision Theory and Application VISSAPP’09), vol. 340. INSTICC
Press, 2009, pp. 331–340.

[18] G. Bradski and A. Kaehler, Learning OpenCV: Computer vision with
the OpenCV library. O’Reilly Media, 2008.

[19] R. B. Rusu, S. Cousins, and W. Garage, “3D is here: Point Cloud Library
(PCL),” in Robotics and Automation (ICRA), 2011 IEEE International
Conference on, 2011, pp. 1–4.

[20] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,
R. Wheeler, and A. Ng, “ROS: an open-source Robot Operating System,”
in International Conference on Robotics and Automation (ICRA), no.
Figure 1, 2009.

[21] J. Sturm, S. Magnenat, F. Colas, D. Cremers, N. Engelhard, R. Siegwart,
F. Pomerleau, and B. Wolfram, “Towards a benchmark for RGB-D
SLAM evaluation,” RSS 2011 Workshop on RGB-D: Advanced Rea-
soning with Depth Cameras, pp. 1–2, 2011.

