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Abstract— In this paper we present a navigation system for
Micro Aerial Vehicles (MAV) based on information provided by
a visual odometry algorithm processing data from an RGB-D
camera. The visual odometry algorithm uses an uncertainty
analysis of the depth information to align newly observed
features against a global sparse model of previously detected
3D features. The visual odometry provides updates at roughly
30 Hz that is fused at 1 KHz with the inertial sensor data
through a Kalman Filter. The high-rate pose estimation is used
as feedback for the controller, enabling autonomous flight. We
developed a 4DOF path planner and implemented a real-time
3D SLAM where all the system runs on-board. The experimen-
tal results and live video demonstrates the autonomous flight
and 3D SLAM capabilities of the quadrotor with our system.

I. INTRODUCTION

Micro aerial vehicles such as quadrotors are popular plat-
forms often used by researchers because of their agility, high
maneuverability, simple mechanicale design and compact
size. Their applications range from surveillance, search and
rescue, to 3D mapping and photography. In order to perform
such tasks, they require a set of sensors suited to the
particular use and context, and the capability of ensure stable
and autonomous flight. Global Positioning System (GPS) is
one of the most common sensors used for outdoor flight.
Such solution is not always reliable, particularly when the
signal’s reception or precision might be unacceptable, as in
the case of dense or indoor environments. Furthermore, in
tasks like exploration and autonomous navigation in cluttered
environments, global position information of the MAV is not
sufficient, so a perception of the surroundings is needed.
When external motion capture systems can not be deployed,
the vehicle needs to rely only on onboard sensors such as
laser scanners and cameras. Laser scanners provide range
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Fig. 1. The CityFlyer MAV equipped with an Asus Xtion Pro Live RGB-D
camera.

information with high precision and odometry can be derived
by scan matching technique. However, laser scanners are not
an optimal solution because of their weight and high power
consumption. Therefore, for more complex environment, The
need of lightweight 3D perception sensors is fulfilled by
cameras. For this reason, visual odometry algorithm has
become very common for flying robots.

An RGB-D camera is a device which provides RGB (red,
green, blue) color and depth information for each pixel of
the image. Depth is retrieved through the conjuction of an
infrared projector and an infrared receiver. Recently new
RGB-D cameras such as the Microsoft Kinect and the Asus
Xtion, have become popular in the robotics community due
to their reduced size, low weight and affordable cost.

In this paper we present our approach for autonomous
quadrotor flight and navigation by means of pose data
from an RGB-D visual odometry algorithm, which relies
on a frame-to-model registration technique, mantaining a
low computation complexity (without any GPU acceleration),
while reducing considerably the drift error of a typical frame-
to-frame approach.

II. PREVIOUS WORK

Autonomous MAV flight using data from visual odometry
has been achieved in the past by several researcher groups
with different approaches.

Algorithms based on stereo vision have been used by
Johnson et al. [13] and Yu et al. [26] to control the altitude
of a UAV. Park et al. [19] and Zamudio et al. [27] used
a stereo camera to control a quadrotor. In [19] a stereo
vision system is used to perform collision avoidance. Other



strategies using monocular vision, which better meet the
needs of a limited payload of a MAV, have been adopted.
Achtelick et al [1] controlled a quadrotor for both indoor
and outdoor flight by using visual information coming from
a single camera pointing down, where depth information was
recoverred by fusing a pressure sensor and an accelerometer
through an Extended Kalman Filter. A similar system is
presented by Blosch et al. [3] to perform indoor exploration
with a MAV (with the difference that it does not rely on any
other exteroceptive sensor). Conroy et al. [5] and Zingg et al.
[28], present a biologically inspired vision system for safe
and stable corridor navigation of a MAV based on optical
flow from an omnidirectional camera. Rondon et al. [22]
present a monocular vision system to estimate and control
altitute, lateral position and forward velocity of a MAV via
optical flow.

In order to perform several tasks with the same platform,
both monocular and stereo vision techniques have been
adopted. For instance Hrabar et al. [11] combine stereo vision
from a forward-facing camera pair and optical flow from
two sideways-looking monocular cameras in order to avoid
obstacles and navigate inside a canyon with maximum clear-
ance. Meier et al. [17] and Fraundorfer et al. [9] integrate a
down-facing monocular camera with a forward-facing stereo
camera for flight control and obstacle avoidance. For a more
robust navigation in different environments, visual odometry
is sometimes fused with other exteroceptive position sensors.
In the work by Tomic et al. [14] and Bachrach et al. [2],
a quadrotor is equipped with a laser range-finder and a
stereo camera to enable stable flight and SLAM in a number
of large-scale, GPS-denied environments, such as an urban
canyon.

Unlike visual odometry from standard cameras, RGB-D
visual odometry has not been widely used by researchers to
control a flying robot. Stowers et al. [24] presented one of
the first results of using RGB-D camera for real-time robot-
control application. They use a Kinect pointed towards the
ground to estimate and control the height of a quadrotor.
The work presented by Huang et al. [12] is the most closely
related to ours. They use a RGB-D visual-odometry (based
on standard stereo visual odometry) to control a MAV in
unknown indoor environments and do mapping. The pose
estimation runs on the onboard computer while mapping and
loop closure runs on an off-board computer.

In our proposed system, we use a recently developed visual
odometry algorithm, able to reduce the drift error thanks to a
fast frame-to-model approach. Further, all the components of
the system (including mapping and loop closure) run onboard
on the same kind of computer as the system proposed by
Huang et al. [12].

III. SYSTEM ARCHITECTURE

The platform we use for our experiments is an AscTec
Pelican quadrotor [10], on which we mounted an Asus
Xtion Pro Live. The quadrotor is equipped with a 1.86
GHz Core2Duo processor with 4GB of RAM and a Flight
Control Unit (FCU) board with 2 ARM7 microcontrollers,

Fig. 2. System diagram. All the software running on the on-board computer
and on the FCU are our contribution except mapping and the Low Level
Controller provided by Asctec Technology.

an Inertial Measurement Unit (IMU) and a pressure sensor.
The system architecture is shown in Fig. 2 which is
described in detail in our previous work [6]. We use one
of the two microcontrollers, the so-called High Level
Processor (HLP), to run our custom firmware that handles
sensor fusion and control, while the Low Level Processor
(LLP) is responsible for attitude control, IMU data fusion
and hardware communication. The powerful on-board
computer is able to manage visual odometry, 3D SLAM
and motion planning. The entire framework is distributed
between a ground station, the on-board computer and the
FCU. The ground station is only used for visualization and
teleoperation. Our framework uses ROS [21] as middleware,
allowing communication among all the different components
of the software (implemented as nodelets, a ROS mechanism
for zero-copy message transport). The HLP and the onboard
computer communicate with each other through the
serial interface, where the Flyer Interface sends ROS
messages and services traslated into packets. Communication
between the two ARM7 microcontrollers (HLP and LLP)
of the FCU board is via an I2C bus.

IV. STATE ESTIMATION

A. Visual Odometry

The visual odometry adopted in this paper uses a frame-
to-model registration approach to compute the transforma-
tion between two consecutive camera poses. This approach
allows us to considerably decrease the drift in the pose
as demonstraded in [7]. We first detect the features in the



captured scene by using Shi-Tomasi [23] algorithm and their
3D coordinates in the camera frame, then we align these
features against a global model of 3D features (previously
detected). We perform data association and filtering using
a probabilistic method, which employs a novel uncertainty
estimation based on a Gaussian mixture model (described in
our previous work [7]). We use this 3D normal distribution
model for each feature detected in the incoming RGB-D
image. This set of 3D features (with mean and covariance
matrix µ and Σ), is expressed with respect to the camera
reference frame. We refer to this set as Data. We have a
similar set that we call Model and is expressed in the fixed
frame. We use ICP [4] to align Data against Model and
then it is transformed into the fixed frame. The alignment
produces the transformation T, composed by a Rotation
matrix R and a translation vector t. We also need to express
the mean and the covariance matrix of each feature in Data
with respect to the fixed frame. We can do so according to:

µ
′

= Rµ+ t (1a)

Σ
′

= RΣRT . (1b)

Once we have Data expressed in the fixed frame we generate
correspondences adopting the following steps. First we build
a Kd-tree [18] of the Model, and then for each feature of
Data we find k nearest Euclidean neighbors from the Model.
Next, for each point d

′

i of the transformed Data, we compute
the Mahalanobis distance between the point and its nearest
neighbor in the Model, mj .

dist(d
′
,m) =

√
∆d′m(Σ[M ] + Σ[D′ ])−1∆T

d′m
(2)

If this distance is lower than a certain threshold, the two
points are associated establishing the correspondence. All
the points which cannot be associated are inserted in the
Model. The update is performed by a Kalman Filter, which
takes the Model and its covariance matrix Σ as prediction
and updates it with the new features and their covariances
(for more details refer to [7]). In order to guarantee costant-
time performance, we constrain the model’s maximum size.
If the model grows beyond a certain upper bound, the oldest
features are discarded and overwritten with the new ones.

The images are streamed at QVGA resolution and pro-
cessed in the on-board computer. The visual odometry run-
time is shown in Fig. 3, consists of two parts: feature
extraction and motion estimation. The average processing
time is 12.3 ms with a maximum of 43 ms and a standard
deviation of 2.5 ms.

B. Sensor Fusion

The output pose of the visual odometry is sent through
the serial interface to the HLP, where is fused with IMU
data at a rate of 1 Khz. The high frequency KF’s output
are fed into the controller, enabling stable flight. As in [6],
we cascade an Alpha Beta Filter (αβF ) and a Kalman
Filter (KF). The (αβF ) runs on the on-board computer and
provides a smoother evaluation of its input data (without
an actual probabilistic analysis). We use it to reduce the

Fig. 3. Onboard computer Processing duration for each incoming QVGA
image.

noise in the first estimation of the velocity, which is a simple
derivative of the visual odometry position data. Hence, the
output of the (αβF ) is sent over serial interface and serves as
correction in the KF. In this indoor application we assume
that the quadrotor moves with low velocity and following
quasi-rectilinear path and in-place rotations. This assumption
allows us to decouple the axis in the KF design and to
compute the linear acceleration relative to the fixed frame,
from the IMU reading, as explained in [1]. We use three
smaller KF’s for each position axis as well as a KF for yaw.
The discrete state space linear model of the KF is:

xk =Ak · xk−1 +Bk · uk (3a)
zk =Hk · xk (3b)

where the state, input and measurement for x (and similary
y and z) are:

x = [x vx]T u = [ax] z = [xvo vxvo
]T (4)

while for yaw we have:

x = [ψ] u = [ωz] z = [ψvo] (5)

where a is the linear acceleration detected by the IMU,
expressed with respect to the fixed frame and ω, the angular
velocity. The matrices A, B and H of the system in (3) for
x, y and z are:

A =

[
1 ∆T
0 1

]
B =

[
∆T 2

2
∆T

]
H =

[
1
1

]
(6)

and for yaw:

A = [1] B = [∆T ] H = [1] (7)

Fig. 4 shows the ouput result of the KF for the
x−component of the linear velocity.

V. CONTROL

The control system provides position and velocity control
separately for each axis. It is based on a cascade structure
of two loops, where the inner loop is provided by the Low
level Controller (LLC) implemented in the LLP. It controls
roll, pitch, yaw-rate and thrust (RPYT). The outer controller
generetes RPYT commands to the inner loop controller. Roll



Fig. 4. Linear x velocity estimation output of the Kalman Filter compared
to the rough estimation by position derivative. We obtained similar results
for y and z.

and pitch commands are generated from the outer loop x−
y− controllers as reference to the inner attitude controller.
Similarly, thrust and yaw rate commands are generated from
the height and yaw controller, respectively. The position
controller is based on a modified PID, while velocity and yaw
controller are PI and P controllers, respectively, as explained
in [6].

VI. REAL-TIME VISUAL SLAM

We developed a visual keyframe-based SLAM system. The
algorithm runs in real time on-board the quadrotor in a sepa-
rate thread. The SLAM algorithm takes as input the pose of
the quadrotor provided by the visual odometry and generates
a sequence of RGB-D keyframes. Each keyframe consists of
a RGB and Depth image pair, together with the pose of the
camera at that instant and a set of SURF features detected
in the RGB image. A new keyframe is generated once the
angular or linear distance traveled between the current pose
and the pose of the latest keyframe exceeds a given threshold
(for example, 0.3 meters or 20 degrees). Incoming keyframes
are tested for associations against previous keyframes. An
association between two keyframes occurs when they are
observing the same scene. This is accomplished in three
steps. First, for the incoming keyframe, we build a set of
candidates from the set of previous keyframes. Candidates
are keyframes whose poses are close enough to be associated
with the new keyframe. We use a liberal pruning threshold
(for example, 5 meters and 90 degrees). Next, we train a
descriptor matcher from all the SURF (Speeded Up Robust
Features) keypoints in the candidate frames. The descriptor
matcher is based on a FLANN (Fast Library for Approximate
Nearest Neighbors) search tree [18]. We use the tree to
further limit the candidate keyframes, based on the number of
nearest neighbors each feature in the incoming keyframe has
in each of the candidate keyframes. We keep only the k top
candidates. For each of the remaining candidates, we perform
robust RANSAC (RANdom SAmple Consensu) [8] matching
of the SURF features. If the RANSAC algorithm finds
enough geometric inliers, we assume there is an association
between the two keyframes. The association observation is
the transformation which best aligns the inliers.

Once the associations are established, we build a graph
whose nodes are keyframe poses and whose edges are

association observations. For consecutive keyframes, the
observation comes from the visual odometry. Additional
associations are generated through the RANSAC matching
described above. Using g2o [15], we find the configuration
of poses which minimizes the observation error accross the
whole graph.

The procedure runs at a rate between 1 Hz and 2 Hz
onboard the quadrotor.

The keyframes are used to build a dense Octomap [25]
which can be used for path-planning.

VII. 4DOF PATH PLANNING

This section introduces a quadrotor path planner in x, y,
z and yaw directions. This implementation is based on a
search approach where the state space is discretized using a
state lattice of motion primitives [20] and an incremental and
anytime version of the A* algorithm with Euclidean distance
heuristic. This module has been tested in simulation in real-
time in combination with the rest of the systems presented
in this paper, on an identical computer as the CPU onboard
the MAV.

A. State space discretization

The quadrotor state space is discretized following a state
lattice, a graph search space that integrates motion planning
constraints within state exploration. In this case, the state
space is four-dimensional, combining the quadrotor position
in Euclidean space (x, y, z) with the yaw orientation ψ. State
space exploration is executed following a set of motion prim-
itives. Motion primitives are short, kinematically feasible
path segments, that can be combined together to produce
longer and more complex paths. Any combination of motion
primitives yield a path that complies to the non-holonomic
constraints imposed by the motion planning problem. Mo-
tion primitives are pre-computed, and their traversal cost is
multiplied by a user selected weight to obtain the motion
cost. Weights are assigned to each motion primitive, in order
to model preferences of one primitive over the others, e.g.,
penalizing changes in altitude while moving forward, in order
to keep next positions centered within sensors field of view.
Collision checking is performed online while exploring the
search graph.

Planning results are greatly affected by motion primitives
selection, in terms of planner times, planner completeness,
and resulting path quality. The planner can not obtain a
feasible path if it cannot be produced by a combination of
available motion primitives. For example, backwards paths
cannot be generated if backwards motion primitives are not
pre-computed and made available in the set. A richer set of
motion primitives improves state space coverage adding flex-
ibility to the planner, but there is a trade-off in computation
time, as each new motion primitive increases the branching
factor at each state.

B. Search algorithm

The described state lattice is explored using a graph
search algorithm. This algorithm is a variant of the A*



Fig. 5. Four-dimensional path (blue) in a cluttered indoor environment. Path
starts from actual quadrotor pose (left reference frame) to a user selected
goal pose (right reference frame). Intermediate quadrotor poses are shown
along the path (colored arrows).

search extended with anytime and incremental capabilities
called ARA* (Anytime Repairing A*) [16]. ARA* anytime
capability is obtained by executing a series of A* searches
where the heuristic is inflated by a factor ε > 1, and reducing
this factor on each execution. With an inflated heuristic, A*
search gives more relevance to the heuristic estimation. This
results in a faster algorithm by means of losing optimality,
but it has been shown that the computed path sub-optimality
is bounded to ε times the cost of the optimal solution [16].
ARA* starts with a high ε value in order to obtain a feasible
path very fast. If time is available, ε is decreased and a search
is executed again reusing computation from previous search.
If enough time is available to reduce ε to 1, the heuristic is
not inflated anymore, and the last search returns the optimal
solution.

The motion primitives used in our implementation com-
plies with a state lattice discretization of 0.25m per cell of
the 3D Euclidean space, and π/4rad for yaw orientation θ.
A typical path query takes 283ms average in a single core
(maximum time allowed is 500ms) until the optimal path
is obtained, in an indoor environment 30x30x5m in size
at 0.25m resolution. For larger environments, more motion
primitives, or finer space resolution, obstacle free paths can
still be obtained before reaching the optimal path (ε = 1)
within the 500ms time budget. An example of the 4D path
obtained in a cluttered indoor environment is shown in Fig. 5.

VIII. EXPERIMENTAL RESULTS

To evaluate the functionality of our system, we performed
several experiments in automous flight where waypoints were
sent through an off-board workstation. In the first experiment
shown in Fig. 6, we commanded the quadrotor to hover
in place for a time of 100 seconds. In the experiment of
Fig. 7, the quadrotor changed its x and y position after
sending a sequence of waypoints. Both experiments prove the
effectiveness of state estimation and control with a maximum
error of 20 cm or less. Fig. 8 demonstrates the 3D SLAM

Fig. 6. Control performance in a hovering experiment over 100s. 3D view
(left) and top view (right)

Fig. 7. Position control with a sequence of waypoints, varying x and y.

capability of the system. The quadrotor flew autonomously in
a large room, with all the computation carried out on-board.
The 3D SLAM algorithm receives pose data from the visual
odometry and generates a sequence of RGB-D keyframes as
explained in Sec. VI. The SLAM algorithm tests association
between the incoming keyframe and the previous ones to
provide correction of the quadrotor trajectory while building
a 3D map. The video is provided as a real-time demonstration
of the autonomous flight.

IX. CONCLUSIONS

In this paper, we describe an autonomous navigation
system for a quadrotor based on our recently developed
RGB-D visual odometry algorithm. We show how the use of
the RGB-D camera as the only exteroceptive sensor enables
3D SLAM in autonomous flight in indoor environments. The
powerful on-board computer is able to run all the components
in real time. We also developed a 4DOF path planner whose
functionality has been verified by simulation and it will
be implemented on-board the quadrotor as future work. In
addition we will tackle some challenging problems related to
RGB-D sensors which have limited range and improve the
visual odometry algorithm in featurless environment.



Fig. 8. Results of the real-time onboard SLAM experiment. Left: orthogonal projection of the recovered point cloud map. The path generated by the
visual odometry and the corrected SLAM path are shown. Middle: side view of the point cloud map. Right: side view of the octomap.
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