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Abstract— This paper introduces GUMS, a complete projection
model for omnidirectional stereo vision systems. GUMS is
based on the existing generalized unified model (GUM), which
we extend in order to satisfy a tight relationship among a
pair of omnidirectional views for fixed baseline sensors. We
exemplify the proposed model’s calibration via a single-camera
coaxial omnistereo system in a joint bundle-adjusted fashion.
We compare our coupled method against the naive approach
where the calibration of intrinsic parameters is first performed
individually for each omnidirectional view using existing monoc-
ular implementations, to then solve for the extrinsic parameters
as an additional step that has no effect on the intrinsic
model solutions initially computed. We validate GUMS and its
calibration effectiveness using both real and synthetic systems
against ground-truth data. Our calibration method proves
successful for correcting the unavoidable misalignment present
in vertically-configured catadioptric rigs. We also generate 3D
point clouds employing the calibrated GUMS systems in order
to demonstrate the qualitative outcome of our contribution.

I. INTRODUCTION

A catadioptric system is a popular way of achieving om-
nidirectional vision by combining a monocular camera and
a curved reflector. Various applications and mirror-camera
configurations exist and have been disseminated in the works
by Baker and Nayar [3] and by Yagi [32] among others.
The most practical omnidirectional catadioptric arrangement
consists of aligning the camera’s optical axis with the axis
of symmetry of a non-degenerate quadric mirror [13]. We
redirect the reader to [5] and [27] as to survey the vast
field of omnidirectional vision sensors (ODVS) and camera
models. Here, we are interested in improving the state-of-the-
art of omnidirectional catadioptric systems to achieve higher
3D sensing capabilities from error-prone omnidirectional
stereo (omnistereo) vision exhibiting lack of construction
and assembly precision.
Usually, a multi-view of the scene can be used to obtain
dense or sparse depth maps from the overlapping region(s).
We demonstrate the proposed model for omnistereo cameras
using a folded configuration where a single-camera observes
two hyperbolic mirrors at once. The characteristics and
functionality of this particular rig is analyzed in [16]. One
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of our latest prototypes is shown in Fig. 3. We are aware
that a folded omnistereo system sacrifices spatial resolution
on the imaging sensor (as analyzed in [28]), but it provides
practical advantages such as reduced cost, size and weight,
and truly-instantaneous stereo correspondences in dynamic
environments.

A. Motivation for an Omnistereo Vision Model
At first, several methods for the calibration of a
“monocular” ODVS have been proposed such as
[10],[4],[8],[19],[7],[12],[25],[2], [26] and [31], and
an extensive comparison of some of these techniques for
the available implementations is given in [24]. However,
only a few calibration methods for “omnistereo” catadioptric
systems have been proposed, such as in [23],[21], [20],[6],
[18], [29], [1], and [26]. Most of them assume a multi-
camera configuration. For example, Lei et al. [18] use the
distortion-based model [25] to calibrate each individual
camera and then compute the essential matrix between them.
We consider this as a “decoupled” approach to omnistereo
calibration. Alternatively, for single-camera multi-axial
configurations with spherical mirrors, the geometric model
given by Agrawal et al. [2] employs the analytical forward
projection (AFP) method in order to find the extrinsic
parameters of an array of specular spheres (demonstrated
by Taguchi et al. [29]). Although Agrawal and Ramalingam
improved this calibration method in [1], it is still only
applicable to array of spheres with a coplanarity constraint
and requires the intrinsic parameters of the camera.
At the time of this writing, the only available implementation
for omnistereo calibration is given by Schöenbein et al.
[26], which is applicable to quasi-central or slightly non-
SVP systems. Their method introduces a centered model
(an SPV approximation) conceived as an optimization post
process based on the computed geometric model of the system
(non-central calibration via AFP). It takes advantage of the
disproportionate distance between the camera to the 3D
scene points in relation to the deviation of each viewing
ray (geometric) and the approximated center of projection
(the centered camera model). This implementation requires
knowledge of the mirror parameters specified by the ODVS
manufacturer in order to initialize the geometric model.
Unfortunately, none of these methods have been applied
to vertical and folded catadioptric systems, and most of
them are isolated calibration routines of monocular models
that usually perform suboptimally when the end goal of the
system is to measure 3D space from triangulation. The lack
of a generalized calibration method for the aforementioned



Fig. 1: Projection pipeline of the Generalized Unified Model
(GUM) for the monocular case: (1) project point Pw towards
the sphere’s focus OM , (2) normalize it as [M] PS, (3) change
of coordinates with respect to [CP] such that [CP] PS, (4) project
onto normalized plane as [pu] pu, (5) apply radial distortion to
get [pd] pd , and (6) transform to pixel [I] mmm in the image.

omnistereo systems motivates the following projection model
we dub GUMS as it stands for Generalized Unified Model for
Stereo omnidirectional vision. We use GUMS as the unified
projection model that couples the omnistereo views in a
holistic solution that is the basis for the calibration technique
exemplified with both real and synthetic data. First, GUMS is
delineated in Section II. In the attempt to generalize the sev-
eral omnistereo configurations using GUMS, our preliminary
work tackles the practical problem of calibrating vertical-
folded omnistereo systems (Section III). When available,
we validate our calibration results against ground-truth data
acquired with a motion-capture system. We also employ
simulated (ray-traced) imagery where ground-truth is inherent.
We find the adequate GUMS parameters by employing a
joint optimization approach, where a popular error metric
is the overall 2D pixel error of the estimated control points
(against ground-truth data), but we also measure 3D point
differences between triangulated point correspondences and
ground-truth poses (where applicable). These experimental
results concerning calibration are presented in Section IV. In
Section V, we demonstrate qualitative results of 3D dense
point clouds generated via the calibrated systems.

II. THE PROJECTION MODEL

A. Overview of GUM for Monocular Views
The unifying sphere model was introduced in 2000 by Geyer
and Daniilidis [11]. For central catadioptric systems, they
theorized the existence of a unit sphere model for projection
that is equivalent to the nonlinear analytical solution via a
quadric reflector (or lens). Around the same time, Barreto
and Araújo [4] presented similar mapping parameters onto
a sphere model. In 2006, Mei and Rives [19], improved
the unified sphere model by adding a distortion step (using
radial and tangential distortion parameters) to the projection
pipeline. An extension to Mei’s sphere model was given by
Xiang et al. [31] in 2013. in order to generalize the unified

model for non-central catadioptric cameras. They removed the
axial constraint for the center of projection CP as well as the
unnecessary tangential distortion parameters. Relative to the
unit sphere’s center OM , the free position for the projection
point becomes [M] cP = [xX , xY , xZ ]

T. Fig. 1 depicts the
GUM projection process of point Pw as pixel [I] mmm.
Since we are going to couple a pair of GUM’s via a common
frame of reference [C] (section II-B), we modify the original
GUM by adding the pertaining translation [M]

[C] t of OC with
respect to OM . Generally, ✓✓✓k is the vector of parameters for a
GUMk. In the vertically aligned configuration, it is convenient
to add a co-linearity constraint for [Mk]

[C] t = [0, 0, tz]
T along

the ZM-axis (Fig. 2), so that

✓✓✓k =
h

tz,k, xk

i

(1⇥11)
, where xk =

h
xk, dk, ck

i

(1⇥10)

with

xk =
⇥
xX ,xY ,xZ

⇤
k ;dk = [kdist1,kdist2]k ;ck = [a,g1,g2,uc,vc]k

Assuming that coordinates of point [M] pw are already given
with respect to [M], the projection function f

j

is the compo-
sition of various subroutines:

[I] mmm f
j

�
[M] pw,✓✓✓

�
:= fP � fD � f

p

� fCP � fS (1)

In sum, the following steps are taken:
1) Given [W] p, change its coordinates with respect to [M]

[M] pw fW
�
[W] p

�
:= [M]

[W] T[W] p (2)

Note that this is only possible if [M]
[W] T is known.

2) Normalize [M] pw (onto the unit sphere) by

[M] pS fS
�
[M] pw

�
:=

[M] pw��[M] pw
�� (3)

3) Change to coordinates with respect to the center of
projection

⇥
Cp

⇤

[CP] pS fCP

�
[M] pS

�
:= [M] pS� [M] cP =

2

64
[M] xS�xX
[M] yS�xY
[M] zS�xZ

3

75

(4)

4) Project onto the undistorted normalized plane as [pu]

[pu] pu f
p

�
[CP] pS

�
:=

2

664

[CP] xS
[CP] zS
[CP] yS
[CP] zS

3

775 (5)

5) Apply radial distortion terms k1,k2 to [pu] pu = [xu, yu]
T

[pd] pd  fD
�
[pu] pu

�
:=[pu] pu +[pu] pu

⇣
k1r

2
u + k2r

4
u

⌘
(6)

where ru =
q

x2
u + y2

u (7)

6) Finally, we obtain the pixel point [I] mmm in the image via
[I] mmm fP

�
[pd] pd

�
:=K[pd] pd,h (8)

where K =

2

64
g1 g1a uc
0 g2 vc
0 0 1

3

75 (9)



Fig. 2: The proposed GUMS with a coaxial constraint for
the vertically-aligned omnidirectional configuration.

B. GUMS for OmniStereo Views

We build the proposed GUMS upon the generalized unified
model for the monocular case (Section II-A). Simply put,
GUMS links two models, GUMk, via a common reference
frame, [C]. Here, k 2 {t,b} is used to indicate the top
or bottom models, respectively. Conveniently, we set [C]
coincident with [Mt], so tz,t  0. Here, we have a total of 21
model parameters:

✓✓✓GUMS =
h

tz,b, xt , xb

i

(1⇥21)
(10)

NOTE: In the more general case, for independent cameras,
we must add a parameter to account for the azimuthal
misalignment between both image planes of the GUMS.

III. CALIBRATION

First, we introduce how calibration is performed in the case of
a monocular system using a single GUM. Then in section III-
B, we couple the pair of models as shown in section II-B. In
both cases, we use an L number of calibration grids, each
containing a chessboard pattern of N corner points. The pose
of each calibration grid [G]g for g 2 {1, . . . ,L} is

gg =
h
[C]⇥
Gg

⇤ q̂T, [C]⇥
Gg

⇤ tT
i
= [C]

[Gg]

⇥
q0,q1,q2,q3, tx, ty, tz

⇤
(11)

where the normalized rotation quaternion is of the form

q̂ := q0 +q1 î+q2 ĵ+q3k̂ and kq̂k= 1

A. Monocular Calibration via GUM
The goal is to find a parameter vector

v =
h

gg, tz, x
i

(1⇥(11+7L))
(12)

that minimizes the objective fJ , the scalar-valued function
accumulating the square of the pixel residuals rm:

v⇤k = argmin
v

(fJ), where fJ(v) :=
1
2

L

Â
g=1

N

Â
i=1

r2
mig

(13)

where

rmig  fr
�
m̃mmig,mmmig

�
:=

���rmig

���=
q�

ũig�uig
�2

+
�
ṽig� vig

�2

(14)
Recall that mmmig is the true (detected) image position of corner
point i from pattern g, and m̃mmig  f

j

⇣
[C] p̃ig,✓̃✓✓

⌘
where f

j

projects p̃ig as m̃mmig via the hypothesized parameters in ✓̃✓✓k.

B. Omnistereo Calibration via GUMS
As done in section III-A, we now need to find parameters

vtb =
h
gg, tz,b, xt , xb

i

(1⇥(21+7L))
(15)

minimizing the objective function fJGUMS that accumulates
the pixel residuals rm computed by (14), but for both models

fJGUMS(ṽtb) :=
1
2 Â

k=[t,b]

L

Â
g=1

N

Â
i=1

fr
�
m̃mmigk,mmmigk

�2 (16)

For L grid patterns of N points, we have 2xNxL points
on the image. We employ bound-constrained minimization
algorithms from the SciPy module [17] such as TNC or
L-BFGS-B (See [22] and [14] for extensive details). Instead
of letting the solver estimate the gradient values numerically,
the search can be vastly sped up by providing the gradient
(Jacobian) of the objective function indicated as equation (16)
with respect to the parameters in ṽtb. Recall that each point
on the grid

⇥
Gg

⇤
pi is projected via f

jt and f
jb as estimated

images points m̃mmigt and m̃mmigb, respectively. Generally, without
making [C] coincide with a particular [Mk], we get

∂ fr

∂vk
=

2

66664
∂ fr

∂ f
jk (1⇥2)

∂ f
jk

∂vk (2⇥(11+7L))| {z }
Jacobian of f

j

3

77775

(1⇥(17+7L))

for k 2 {t,b}, where
∂ fr

∂ f
jk

=


∂ fr

∂ ũ
,

∂ fr

∂ ṽ

�

(1⇥2)
=
h
ũ�u, ṽ� v

i

igk

Pairwise, in each search iteration, each point [C] p̃ig provides:

∂ fr

∂vtb
=

8
>>>>>>>>><

>>>>>>>>>:

∂ fr
∂ f

jt

h
∂ f

jt
∂g

∂ f
jt

∂ tz,t
0(2⇥1)

∂ f
jt

∂xt
0(2⇥10)

i

| {z }
(2⇥(7L+22))
[

∂ fr
∂ f

jb


∂ f

jb
∂g 0(2⇥1)

∂ f
jb

∂ tz,b
0(2⇥10)

∂ f
jb

∂xb

�

| {z }
(2⇥(7L+22))

9
>>>>>>>>>=

>>>>>>>>>;



C. Parameter Initialization

A good initialization of parameter values at t0 aids the
convergence of the optimization process. Assuming a-priori
knowledge of the theoretical mirror profiles, we can compute
the unified model parameters x(t0)k with the equations for the
central case tabulated in [19]. In lack of such knowledge, our
folded omnistereo rig could initialize each center of projection
point to xt

t0  [0,0,1] and xb
t0  [0,0,�1] without affecting

the final convergence of the search as how is done with Mei’s
or Xiang’s existing monocular implementations in MATLAB.
We estimate each initial grid pose g(t0)g as follows:

1) Back-project (lift) detected grid points [Ik]{mmmi}g from
image to the theoretical quadric surface or initial GUM.

2) A virtual image of the grid pattern g is constructed
by projecting these surface points orthographically to
a plane pg described by the horizontal and vertical
vectors formed between the “extreme” corner points
on the mirror surface. The optical axis’ direction ẑMk
of a “virtual” pinhole camera coincident with OMk is
normal to plane pg. The versor ûMk is the aforementioned
horizontal vector, while v̂Mk  ẑMk ⇥ ûMk . The focal
length of the virtual camera is the orthographic distance
between OMk and the plane pg.

3) Since points on the virtual image plane pg are given
in [C], transform their coordinates onto [Mk] by a

rotation [Mk]
[C]

^
R using direction cosine matrix (DCM) and

a translation [Mk]
[C]

^
t .

4) Approximate the rigid transform [Mk]⇥
Gg

⇤ T using either planar
homography or PnP from the set of virtual points.

5) We put the grid’s pose back to [C], so given [C]⇥
Gg

⇤ gk for k 2
{t,b}, the average pose [C]⇥

Gg
⇤ g(t0) is found. The orientation

value is the result of a spherical linear interpolation
(SLERP) between the approximated both poses.

D. Parameter Optimization - A Coupled Approach

In a “decoupled” approach, calibration is performed naively
by parts: first, intrinsic parameters for each projection model
(GUMk) are found independently according to (13); then,
the relative poses of the common frame [C] with respect
to both model frames

⇣
[Mt]
[C] T, [Mb]

[C] T
⌘

are obtained via a
third error-minimization process (but without affecting the
intrinsic parameters previously found). On the other hand,
our calibration is “coupled” because the whole optimization
of equation (16) happens simultaneously. In Tables II and III,
we provide a quantitative contrast between the coupled and
decoupled approaches for GUMS calibration.
Regarding time complexity, the number of parameters plays
an important factor during calibration. In an unconstrained and
decoupled omnistereo calibration, the total number of param-
eters adds up to 2⇤(7L+17), where L is the number of poses
of the calibration grid and each model has 17 parameters:
10 intrinsic (solved for first) + 7 due to [Mk]

[C] T (solved for in
the third optimization process). By coupling the optimization
of both models such that GUMS: (GUMt | GUMb), and by
coaxially constraining all [Mk]

[C] T as depicted in Fig. 2 with just

Fig. 3: Left: omnistereo rig prototype. Right: omnidirectional
image captured by the real-life far-sighted prototype. Notice
the annotated coaxial misalignment.

TABLE I: Rig Geometric Parameters (Theoretical Values)

Parameter Dimension on Rig Type
Near-Sighted Far-Sighted & Synthetic

rsys[mm] 37.0 40.0
rre f [mm] 17.23 19.0
rcam[mm] 7 18.0

b[mm] 131.61 150.0
hsys[mm] 150.0 176.6
asys[�] 66.8 40.9

aSROI [�] 25.0 33.5

translations [Mk]
[C] t = [0, 0, tz,k]

T, the number of parameters
is reduced to 7L + (2 ⇤ 11) being solved within a single
optimization process. Hence, the L grid poses gg defined
in (11) are not recomputed.

IV. CALIBRATION EXPERIMENTS

The validation experiments shown in this manuscript are
based on two folded catadioptric systems with hyperbolic
mirrors like the real-life rig shown in Fig. 3. Table I provides
the relevant system dimensions such as height hsys, baseline b,
total vertical field-of-view (vFOV) asys, and the overlapping
vFOV aSROI pertaining to the stereo capabilities of each rig.

A. Calibration Results

Fig. 6 and Fig. 7 exemplify variants for the simulated mis-
alignment and the real far-sighted rig, respectively. The error
analysis (RMSE) for some possible experimental variants
are tabulated in Tables II and III. When compared against
ground-truth (GT) data, these values agree with our claim
that the decoupled approach can produce higher errors.
Fig. 5 allows us to visualize the 3D qualitative results after the
calibration, where the estimated grid poses almost coincide
with the ground-truth poses (from a motion-capture system).
We also visualize the initial grid pose predictions (in blue)
computed with the method outlined in Section III-C.

TABLE II: Error Analysis for Synthetic Experiments

Aligned Coupled 2D Error [px] 3D Error from GT [mm]
GT no GT Triang. [G] Pose

Yes Yes 0.09 0.08 2.26 0.42
No 1.82 0.64 28.06 4.64

No Yes 5.70 0.10 23.52 20.59
No 8.94 7.74 1098.8 20.68



Fig. 4: Overlay of all point projections to image pixels for the
misaligned synthetic experiment. Dotted circles and center
points belong to the theoretical (uncalibrated) radial bounds.
Solid circles and cross-hair centers relate to the calibrated
results. Color annotations: center and boundaries of top mirror
(cyan) and bottom mirror (magenta); projected grid points
from ground-truth poses (green) and from estimated poses
after calibration (red); detected grid corner pixels (blue).

TABLE III: Error Analysis for Real-Life Experiments

Sight Coupled 2D Error [px] 3D Error from GT [mm]
GT no GT Triang. [G] Pose

Near Yes 4.86 2.56 6.06 3.66
No 11.02 10.94 22.34 4.64

Far Yes NA 2.58 NA NA
No NA 12.41 NA NA

V. 3D SENSING FROM OMNISTEREO IMAGES

Stereo vision from images at distinct locations is a popular
method for obtaining 3D range information via triangulation
of point correspondences, which can be sought densely via
block scanning [9] or sparsely via feature description [30].
Due to our model’s coaxial configuration, it is convenient to
work on rectified panoramic images, where the search for
correspondences can be performed using any of the methods
available for perspective cameras. In [16], we demonstrate
how these panoramic images are produced and how we
triangulate correspondences to provide 3D information.
Regardless of the matching technique employed vertically
between panoramas [Xk], we resolve for

�
[It] mmmi, [Ib] mmmi

�
by the

disparity map visualized at the top of Fig. 6a and Fig. 7a.

VI. DISCUSSION AND FUTURE WORK

In this work, we presented a tightly-coupled model (GUMS)
for omnistereo vision systems. For now, we only demonstrated
GUMS on folded catadioptric rig that we have custom-
designed in [16]. Our focus here is to show that the “coupled”
calibration using the proposed GUMS can provide more
accurate results than the naive decoupled approach because
we simultaneously optimize all the model parameters.
We demonstrated the calibration accuracy of GUMS for
both real and synthetic experiments, especially while dealing
with coaxial misalignment that arises often in practice. In

Fig. 5: Visualization of estimated 3D poses for the grids using
the near-sighted omnistereo rig. Color annotations: ground-
truth poses (green), estimated poses after calibration (red),
initialized poses for calibration (blue).

order to validate the precision of the real sensor, we used
ground truth data obtained from a motion capture system. Our
main contribution is not a direct application of a calibrated
multiview omnidirectional sensor for 3D related fields such as
visual odometry and structure-from-motion (known as SLAM
in robotics), but we provide a necessary extension to the
state-of-the-art generalized unified model (GUM) presented
in Section II-A. A well calibrated omnistereo rig is more
reliable as a 3D sensor for autonomous navigation, especially
for robots such as MAVs that employ omnidirectional motion
models and simultaneous observation of the 3D environment
is preferable. The 3D point-clouds we have shown in this
manuscript mainly intends to illustrate the triangulation results
at a given omnistereo instance using the calibrated GUMS
for those rigs. Our ultimate goal is to extend the GUMS
model and the calibration toolkit to fit other configurations
of omnidirectional systems. A Python implementation is
available at the author’s public repository [15] and a video
demonstration is provided in the supporting materials.
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