

Quantitative Experimental Results

TUM DSO dataset: all 50 sequences

Overall Average Errors										
Average Metric	Fe	ature	Gray	Gray-A	Bit-Planes	SIFT	Siamese	AlexNet		
Number of Tracked Frames			2336	2604	2095	2361	636	3131		
RPE Rotation Error	$\left[\frac{\text{degree}}{\text{meter}}\right]$		7.44	7.31	13.73	8.17	8.10	6.14		
RPE Trans. Ang. Err	or $\left[\frac{\deg x}{met}\right]$	ree er	18.05	16.06	38.02	21.86	20.90	12.93		
ATE [meters]		No. of Concession, Name	0.38	0.46	0.45	0.37	0.07	0.65		

Note: RPE here uses the normalized errors by the path length

Average Rankings

						U			
	Tracke	d Frames	Rotation Er		ror	Trans. Ang. Error		ATE	
Feature	Wins	Average	Wins	Ave	rage	Wins	Average	Wins	Average
	Count	Ranking	Count	Ran	king	Count	Ranking	Count	Ranking
Gray	21	2.76	3	3.	58	7	3.24	1	3.92
Gray-A	21	2.60	3	3.	62	4	3.40	5	3.80
Bit-Planes	15	3.18	3	4.4	40	5	4.14	3	4.16
SIFT	20	2.82	12	3.	18	6	3.72	8	3.42
Siamese	0	5.54	10	3.72		4	4.06	26	1.88
AlexNet	37	1.74	19	19 2.50		24	2.44	7	3.82
Wins Count: Larger is better			tter	Avera	ge Ranking: Si	maller is better			

• Gray: The baseline single-channel algorithm [1][2]

• Gray-A: Gray with the affine lighting model [2]

Bit-Planes: The 8-bit binary descriptor proposed by [3]

Direct Multichannel Tracking

Carlos Jaramillo*

CUNY Graduate Center

Contributions

Evaluation with 5 public datasets:

- TUM DSO (50 *real* sequences with GT)
- KITTI Odometry (11 *real* seqs with GT)
- ICL-NUIM (8 *synthetic* seqs)
- Tsukuba (New 4 *synthetic* seqs)
- LSD-SLAM (4 *real* seqs, without GT)

RPE Rotation Angle TUM DSO dataset: first 4 sequences

Number in [brackets] specify the successful number of tracked frames

References:

[1] J. Engel, J. Sturm, and D. Cremers. Semi-dense visual odometry for a monocular camera. In Proc. IEEE Int'l Conf. Computer Vision (ICCV), pages 1449–1456, 2013. [2] J. Engel, T. Schops, and D. Cremers. LSD-SLAM: Large-scale direct monocular SLAM. In Proc. European Conf. Computer Vision (ECCV), Sept. 2014. [3] H. Alismail, M. Kaess, B. Browning, and S. Lucey. Direct Visual Odometry in Low Light Using Binary Descriptors. IEEE Robotics and Automation Letters, 2(2):444–451, 2017.

Yuichi Taguchi & Chen Feng

Mitsubishi Electric Research Laboratories (MERL)

*This work was done while interning at MERL

GRADUATE

Depth Maps Comparison

KITTI dataset: sequence No. 6 at *t* = 250

		Feature	Generation	Tracking	Total					
		r catul c	(ms)	(ms)	(ms)	(fps)				
let		Gray (1D)	1.0×10^{1}	$2.0 imes 10^1$	30	33				
		Gray-A (1D)	1.0×10^1	$2.1 imes 10^1$	31	32				
	E	Bit-Planes (8D)	$2.0 imes 10^1$	1.2×10^2	140	7				
		SIFT (128D)	$5.3 imes 10^2$	7.4×10^2	1270	1				
	S	iamese (256D)	$8.0 imes 10^3$	1.0×10^{3}	9000	$\frac{1}{9}$				
		AlexNet (96D)	$7.9 imes 10^1$	$4.3 imes 10^2$	509	Ž				
		AlexNet-64D	$\overline{6.1 \times 10^1}$	$\overline{2.7 \times 10^2}$	331	3				
	7	AlexNet-32D	$4.0 imes 10^1$	1.5×10^2	190	5				
	e e	AlexNet-16D	$2.9 imes 10^1$	$7.6 imes 10^1$	105	10				
	auc	AlexNet-8D	$2.4 imes 10^1$	$3.6 imes 10^1$	60	17				
et-96D	Yeo	AlexNet-4D	$2.2 imes 10^1$	$2.3 imes10^1$	45	22				
	-4	AlexNet-2D	$2.1 imes 10^1$	$2.1 imes 10^1$	42	24				
60		AlexNet-1D	$2.0 imes 10^1$	$2.0 imes10^1$	40	25				
et-96D 60	keaucea	AlexNet-64D AlexNet-32D AlexNet-16D AlexNet-8D AlexNet-4D AlexNet-2D AlexNet-1D	$ \begin{array}{c} 7.9 \times 10 \\ 6.1 \times 10^{1} \\ 4.0 \times 10^{1} \\ 2.9 \times 10^{1} \\ 2.4 \times 10^{1} \\ 2.2 \times 10^{1} \\ 2.1 \times 10^{1} \\ 2.0 \times 10^{1} \end{array} $	$\begin{array}{c} 4.3 \times 10 \\ \hline 2.7 \times 10^2 \\ 1.5 \times 10^2 \\ 7.6 \times 10^1 \\ 3.6 \times 10^1 \\ 2.3 \times 10^1 \\ 2.1 \times 10^1 \\ 2.0 \times 10^1 \end{array}$	309 331 190 105 60 45 42 40	- 1 1 2 2				